Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

被引:18
|
作者
Gotoda, Hiroshi [2 ]
Pradas, Marc [1 ]
Kalliadasis, Serafim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Ritsumeikan Univ, Dept Mech Engn, Kusatsu, Shiga 5258577, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
欧洲研究理事会;
关键词
Spatiotemporal chaos; nonlinear forecasting; pattern formation; SOLITARY PULSES; SPATIOTEMPORAL CHAOS; DISSIPATIVE MEDIA; FALLING FILM; TIME-SERIES; DYNAMICS; SYSTEMS; INSTABILITY; PREDICTION; WAVES;
D O I
10.1142/S0218127415300153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise
    Gao, Peng
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [42] Stability of Kuramoto-Sivashinsky fronts in moving fluid
    Vilela, P. M.
    Vasquez, Desiderio A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 3001 - 3010
  • [43] Topological classification of periodic orbits in the Kuramoto-Sivashinsky equation
    Dong, Chengwei
    MODERN PHYSICS LETTERS B, 2018, 32 (15):
  • [44] Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation
    Baudouin, Lucie
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    Mercado, Alberto
    APPLICABLE ANALYSIS, 2013, 92 (10) : 2084 - 2102
  • [45] Distributed Control of the Kuramoto-Sivashinsky Equation using Approximations
    al Jamal, Rasha
    Morris, Kirsten
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3322 - 3327
  • [46] Global Well-posedness of the Stochastic Generalized Kuramoto-Sivashinsky Equation with Multiplicative Noise
    Wu, Wei
    Cui, Shang-bin
    Duan, Jin-qiao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 566 - 584
  • [47] Short-memory Mori-Zwanzig models with application to the Kuramoto-Sivashinsky equation
    Stinis, P.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 671 - 676
  • [48] Convergence rate analysis of the coefficient identification problems in a Kuramoto-Sivashinsky equation
    Cao, Kai
    INVERSE PROBLEMS, 2023, 39 (01)
  • [49] On the Classical Solutions for the Kuramoto-Sivashinsky Equation with Ehrilch-Schwoebel Effects
    Coclite, Giuseppe Maria
    Di Ruvo, Lorenzo
    CONTEMPORARY MATHEMATICS, 2022, 3 (04): : 386 - 431
  • [50] Stackelberg-Nash exact controllability for the Kuramoto-Sivashinsky equation with boundary and distributed controls
    Carreno, Nicolas
    Santos, Mauricio C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 343 : 1 - 63