Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

被引:18
|
作者
Gotoda, Hiroshi [2 ]
Pradas, Marc [1 ]
Kalliadasis, Serafim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Ritsumeikan Univ, Dept Mech Engn, Kusatsu, Shiga 5258577, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
欧洲研究理事会;
关键词
Spatiotemporal chaos; nonlinear forecasting; pattern formation; SOLITARY PULSES; SPATIOTEMPORAL CHAOS; DISSIPATIVE MEDIA; FALLING FILM; TIME-SERIES; DYNAMICS; SYSTEMS; INSTABILITY; PREDICTION; WAVES;
D O I
10.1142/S0218127415300153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Existence and nonexistence of a global solution to the Kuramoto-Sivashinsky equation
    V. A. Galaktionov
    E. Mitidieri
    S. I. Pohozaev
    Doklady Mathematics, 2008, 77 : 238 - 242
  • [22] GLOBAL EXACT CONTROLLABILITY TO THE TRAJECTORIES OF THE KURAMOTO-SIVASHINSKY EQUATION
    Gao, Peng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (01): : 181 - 191
  • [23] Optimal actuator/sensor placement for nonlinear control of the Kuramoto-Sivashinsky equation
    Lou, YM
    Christofides, PD
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2003, 11 (05) : 737 - 745
  • [24] Output Feedback Control of the Kuramoto-Sivashinsky Equation
    al Jamal, Rasha
    Morris, Kirsten
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 567 - 571
  • [25] A higher-order finite element approach to the Kuramoto-Sivashinsky equation
    Anders, Denis
    Dittmann, Maik
    Weinberg, Kerstin
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (08): : 599 - 607
  • [26] The topology of a chaotic attractor in the Kuramoto-Sivashinsky equation
    Abadie, Marie
    Beck, Pierre
    Parker, Jeremy P.
    Schneider, Tobias M.
    CHAOS, 2025, 35 (01)
  • [27] Optimal Boundary Control of Kuramoto-Sivashinsky Equation
    Dubljevic, Stevan
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 141 - 147
  • [28] Instability of traveling waves of the Kuramoto-Sivashinsky equation
    Strauss, W
    Wang, GX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (02) : 267 - 276
  • [29] INSTABILITY OF TRAVELING WAVES OF THE KURAMOTO-SIVASHINSKY EQUATION
    W.STRAUSS
    WANG GUANXIANG
    Chinese Annals of Mathematics, 2002, (02) : 267 - 276
  • [30] Fixed points of a destabilized Kuramoto-Sivashinsky equation
    Bartha, Ferenc A.
    Tucker, Warwick
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 339 - 349