Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

被引:18
|
作者
Gotoda, Hiroshi [2 ]
Pradas, Marc [1 ]
Kalliadasis, Serafim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Ritsumeikan Univ, Dept Mech Engn, Kusatsu, Shiga 5258577, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
欧洲研究理事会;
关键词
Spatiotemporal chaos; nonlinear forecasting; pattern formation; SOLITARY PULSES; SPATIOTEMPORAL CHAOS; DISSIPATIVE MEDIA; FALLING FILM; TIME-SERIES; DYNAMICS; SYSTEMS; INSTABILITY; PREDICTION; WAVES;
D O I
10.1142/S0218127415300153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation
    Tchaho, C. T. Djeumen
    Omanda, H. M.
    Belobo, D. Belobo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09):
  • [2] On the Solutions for the Conserved Kuramoto-Sivashinsky Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MILAN JOURNAL OF MATHEMATICS, 2025,
  • [3] From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation
    Kawamura, Yoji
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [4] Stabilizing non-trivial solutions of the generalized Kuramoto-Sivashinsky equation using feedback and optimal control
    Gomes, Susana N.
    Papageorgiou, Demetrios T.
    Pavliotis, Grigorios A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (01) : 158 - 194
  • [5] Coherent structures theory for the generalized Kuramoto-Sivashinsky equation
    Tseluiko, D.
    Saprykin, S.
    Kalliadasis, S.
    THIRD INTERNATIONAL SYMPOSIUM ON BIFURCATIONS AND INSTABILITIES IN FLUID DYNAMICS, 2010, 216
  • [6] Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution
    Nazari-Golshan, Akbar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (11):
  • [7] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13
  • [8] State selection in the noisy stabilized Kuramoto-Sivashinsky equation
    Obeid, D.
    Kosterlitz, J. M.
    Sandstede, B.
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [9] COMPUTATIONAL STUDY OF THE DISPERSIVELY MODIFIED KURAMOTO-SIVASHINSKY EQUATION
    Akrivis, G.
    Papageorgiou, D. T.
    Smyrlis, Y. -S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A792 - A813
  • [10] Dynamical bifurcation of the damped Kuramoto-Sivashinsky equation
    Choi, Yuncherl
    Han, Jongmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 383 - 398