Zinc and antibiotic resistance:: metallo-β-lactamases and their synthetic analogues

被引:45
作者
Tamilselvi, A. [1 ]
Mugesh, Govindasamy [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
来源
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY | 2008年 / 13卷 / 07期
关键词
antibiotics; drug resistance; metallo-beta-lactamase; synthetic mimics; zinc enzymes;
D O I
10.1007/s00775-008-0407-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibiotic resistance to clinically employed beta-lactam antibiotics currently poses a very serious threat to the clinical community. The origin of this resistance is the expression of several beta-lactamases that effectively hydrolyze the amide bond in beta-lactam compounds. These beta-lactamases are classified into two major categories: serine beta-lactamases and metallo-beta-lactamases. The metalloenzymes use one or two zinc ions in their active sites to catalyze the hydrolysis of all classes of beta-lactam antibiotics, including carbapenems. As there is no clinically useful inhibitor for the metallo-beta-lactamases, it is important to understand the mechanism by which these enzymes catalyze the hydrolysis of antibiotics. In this regard, the development of synthetic analogues will be very useful in understanding the mechanism of action of metallo-beta-lactamases. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-beta-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of beta-lactam antibiotics.
引用
收藏
页码:1039 / 1053
页数:15
相关论文
共 64 条
[11]   CARBOXYPEPTIDASE-A [J].
CHRISTIANSON, DW ;
LIPSCOMB, WN .
ACCOUNTS OF CHEMICAL RESEARCH, 1989, 22 (02) :62-69
[12]   Carbonic anhydrase: Evolution of the zinc binding site by nature and by design [J].
Christianson, DW ;
Fierke, CA .
ACCOUNTS OF CHEMICAL RESEARCH, 1996, 29 (07) :331-339
[13]   Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis [J].
Concha, NO ;
Rasmussen, BA ;
Bush, K ;
Herzberg, O .
STRUCTURE, 1996, 4 (07) :823-836
[14]   Spectroscopic studies on cobalt(II)-substituted metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria [J].
Crawford, PA ;
Yang, KW ;
Sharma, N ;
Bennett, B ;
Crowder, MW .
BIOCHEMISTRY, 2005, 44 (13) :5168-5176
[15]   Structural basis for the role of Asp-120 in metallo-β-lactamases [J].
Crisp, Jonathan ;
Conners, Rebecca ;
Garrity, James D. ;
Carenbauer, Anne L. ;
Crowder, Michael W. ;
Spencer, James .
BIOCHEMISTRY, 2007, 46 (37) :10664-10674
[16]   Metallo-β-lactamases:: Novel weaponry for antibiotic resistance in bacteria [J].
Crowder, Michael W. ;
Spencer, James ;
Vila, Alejandro J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (10) :721-728
[17]   Role of zinc content on the catalytic efficiency of B1 metallo β-lactamases [J].
Dal Peraro, Matteo ;
Vila, Alejandro J. ;
Carloni, Paolo ;
Klein, Michael L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (10) :2808-2816
[18]   Molecular dynamics simulations of the mononuclear zinc-β-lactamase from Bacillus cereus complexed with benzylpenicillin and a quantum chemical study of the reaction mechanism [J].
Díaz, N ;
Suárez, D ;
Merz, KM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (40) :9867-9879
[19]   Crystal structure of the zinc-dependent β-lactamase from Bacillus cereus at 1.9 Å resolution:: Binuclear active site with features of a mononuclear enzyme [J].
Fabiane, SM ;
Sohi, MK ;
Wan, T ;
Payne, DJ ;
Bateson, JH ;
Mitchell, T ;
Sutton, BJ .
BIOCHEMISTRY, 1998, 37 (36) :12404-12411
[20]   Standard numbering scheme for class B β-lactamases [J].
Galleni, M ;
Lamotte-Brasseur, J ;
Rossolini, GM ;
Spencer, J ;
Dideberg, O ;
Frère, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (03) :660-663