Homeomorphism groups of homogeneous compacta need not be minimal

被引:5
作者
van Mill, Jan [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Fac Sci, NL-1081 HV Amsterdam, Netherlands
关键词
Homogeneous compactum; Homeomorphism group; Minimal topology; DIMENSION; SPACES;
D O I
10.1016/j.topol.2011.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the homeomorphism group of the n-dimensional Menger universal continuum is not minimal. This answers a question by Stojanov from about 1984. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2506 / 2509
页数:4
相关论文
共 25 条
[1]  
Anderson R.D., 1957, B AM MATH SOC, V63, P43
[2]   A CHARACTERIZATION OF THE UNIVERSAL CURVE AND A PROOF OF ITS HOMOGENEITY [J].
ANDERSON, RD .
ANNALS OF MATHEMATICS, 1958, 67 (02) :313-324
[3]  
[Anonymous], 1966, Allyn and Bacon Series in Advanced Mathematics
[4]  
Arhangelskii A.V., 2008, ATLANTIS STUD MATH, V1
[5]  
ARHANGELSKII AV, 1987, RUSS MATH SURV, V42, P83
[6]   ON DIMENSIONS OF CERTAIN SPACES OF HOMEOMORPHISMS [J].
BRECHNER, BL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) :516-&
[7]  
COMFORT WW, 1992, RECENT PROGR GEN TOP, P58
[8]   On homeomorphism groups of Menger continua [J].
Dijkstra, JJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) :2665-2679
[9]   Relative minimality and co-minimality of subgroups in topological groups [J].
Dikranjan, Dikran ;
Megrelishvili, Michael .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) :62-76
[10]  
Dikranjan Dikran N., 1990, Monographs and Textbooks in Pure and Applied Mathematics, V130