Heat transfer by rapidly rotating Rayleigh-Benard convection

被引:137
|
作者
King, E. M. [1 ]
Stellmach, S. [2 ]
Aurnou, J. M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Univ Munster, Inst Geophys, Arbeitsgrp Geodynam, D-48149 Munster, Germany
[3] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Benard convection; geostrophic turbulence; rotating flows; BOUNDARY-LAYER; TURBULENT CONVECTION; THERMAL TURBULENCE; NUMERICAL-SIMULATION; SCALING PROPERTIES; PRANDTL NUMBER; TEMPERATURE; REGIMES; SYSTEM;
D O I
10.1017/jfm.2011.493
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulent, rapidly rotating convection has been of interest for decades, yet there exists no generally accepted scaling law for heat transfer behaviour in this system. Here, we develop an exact scaling law for heat transfer by geostrophic convection, Nu = (Ra/Ra-c)(3) = 0.0023 (RaE4)-E-3, by considering the stability of the thermal boundary layers, where Nu, Ra and E are the Nusselt, Rayleigh and Ekman numbers, respectively, and Ra-c is the critical Rayleigh number for the onset of convection. Furthermore, we use the scaling behaviour of the thermal and Ekman boundary layer thicknesses to quantify the necessary conditions for geostrophic convection: Ra less than or similar to E-3/2. Interestingly, the predictions of both heat flux and regime transition do not depend on the total height of the fluid layer. We test these scaling arguments with data from laboratory and numerical experiments. Adequate agreement is found between theory and experiment, although there is a paucity of convection data for low Ra E-3/2
引用
收藏
页码:568 / 582
页数:15
相关论文
共 50 条
  • [41] Vortex structure in rotating Rayleigh-Benard convection
    Vorobieff, P
    Ecke, RE
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 123 (1-4) : 153 - 160
  • [42] Hard turbulence in rotating Rayleigh-Benard convection
    Julien, K
    Legg, S
    McWilliams, J
    Werne, J
    PHYSICAL REVIEW E, 1996, 53 (06) : R5557 - R5560
  • [43] Structure functions in rotating Rayleigh-Benard convection
    Kunnen, R. P. J.
    Clercx, H. J. H.
    Geurts, B. J.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [44] Countertraveling waves in rotating Rayleigh-Benard convection
    Li, Ligang
    Liao, Xinhao
    Zhang, Keke
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [45] Flow pattern and heat transfer rate in Rayleigh-Benard convection
    Watanabe, T
    PHYSICS OF FLUIDS, 2004, 16 (04) : 972 - 978
  • [46] Heat-transport enhancement in rotating turbulent Rayleigh-Benard convection
    Weiss, Stephan
    Wei, Ping
    Ahlers, Guenter
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [47] Asymptotic analysis of heat transfer in turbulent Rayleigh-Benard convection
    Hölling, M
    Herwig, H
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (5-6) : 1129 - 1136
  • [48] Effect of heat source on Rayleigh-Benard convection in rotating viscoelastic liquids
    Jayalatha, G.
    Suma, N.
    HEAT TRANSFER, 2021, 50 (08) : 7672 - 7690
  • [49] Effect of surface roughness on heat transfer in Rayleigh-Benard convection
    Tummers, Mark J.
    Steunebrink, Martin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 139 : 1056 - 1064
  • [50] Modeling of Rayleigh-Benard natural convection heat transfer in nanofluids
    Elhajjar, Bilal
    Bachir, Glades
    Mojtabi, Abdelkader
    Fakih, Chakib
    Charrier-Mojtabi, Marie Catherine
    COMPTES RENDUS MECANIQUE, 2010, 338 (06): : 350 - 354