Heat transfer by rapidly rotating Rayleigh-Benard convection

被引:137
|
作者
King, E. M. [1 ]
Stellmach, S. [2 ]
Aurnou, J. M. [3 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Univ Munster, Inst Geophys, Arbeitsgrp Geodynam, D-48149 Munster, Germany
[3] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Benard convection; geostrophic turbulence; rotating flows; BOUNDARY-LAYER; TURBULENT CONVECTION; THERMAL TURBULENCE; NUMERICAL-SIMULATION; SCALING PROPERTIES; PRANDTL NUMBER; TEMPERATURE; REGIMES; SYSTEM;
D O I
10.1017/jfm.2011.493
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Turbulent, rapidly rotating convection has been of interest for decades, yet there exists no generally accepted scaling law for heat transfer behaviour in this system. Here, we develop an exact scaling law for heat transfer by geostrophic convection, Nu = (Ra/Ra-c)(3) = 0.0023 (RaE4)-E-3, by considering the stability of the thermal boundary layers, where Nu, Ra and E are the Nusselt, Rayleigh and Ekman numbers, respectively, and Ra-c is the critical Rayleigh number for the onset of convection. Furthermore, we use the scaling behaviour of the thermal and Ekman boundary layer thicknesses to quantify the necessary conditions for geostrophic convection: Ra less than or similar to E-3/2. Interestingly, the predictions of both heat flux and regime transition do not depend on the total height of the fluid layer. We test these scaling arguments with data from laboratory and numerical experiments. Adequate agreement is found between theory and experiment, although there is a paucity of convection data for low Ra E-3/2
引用
收藏
页码:568 / 582
页数:15
相关论文
共 50 条
  • [31] Traveling waves in rotating Rayleigh-Benard convection
    Choi, WY
    Prasad, D
    Camassa, R
    Ecke, RE
    PHYSICAL REVIEW E, 2004, 69 (05):
  • [32] Plume dynamics in rotating Rayleigh-Benard convection
    Pieri, Alexandre B.
    Falasca, Fabrizio
    von Hardenberg, Jost
    Provenzale, Antonello
    PHYSICS LETTERS A, 2016, 380 (14-15) : 1363 - 1367
  • [33] Transitions in turbulent rotating Rayleigh-Benard convection
    Schmitz, S.
    Tilgner, A.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2010, 104 (5-6): : 481 - 489
  • [34] Melting driven by rotating Rayleigh-Benard convection
    Ravichandran, S.
    Wettlaufer, J. S.
    JOURNAL OF FLUID MECHANICS, 2021, 916
  • [35] Scaling laws for rotating Rayleigh-Benard convection
    Scheel, JD
    Cross, MC
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [36] Heteroclinic behavior in rotating Rayleigh-Benard convection
    Demircan, A
    Scheel, S
    Seehafer, N
    EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (04): : 765 - 775
  • [37] Vortex dynamics in rotating Rayleigh-Benard convection
    Ding, Shan-Shan
    Ding, Guang-Yu
    Chong, Kai Leong
    Wu, Wen-Tao
    Xia, Ke-Qing
    Zhong, Jin-Qiang
    JOURNAL OF FLUID MECHANICS, 2023, 974
  • [38] Numerical simulations of rotating Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Lohse, Detlef
    DIRECT AND LARGE-EDDY SIMULATION VIII, 2011, 15 : 359 - +
  • [39] The amplitude equation for rotating Rayleigh-Benard convection
    Scheel, J. D.
    PHYSICS OF FLUIDS, 2007, 19 (10)
  • [40] Mode interaction in rotating Rayleigh-Benard convection
    Rüdiger, S
    Knobloch, E
    FLUID DYNAMICS RESEARCH, 2003, 33 (5-6) : 477 - 492