Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+

被引:55
|
作者
Qu, Ping [1 ,2 ,3 ,4 ]
Li, Yuncong [4 ]
Huang, Hongying [1 ,2 ]
Chen, Jianjun [5 ]
Yu, Zebin [6 ]
Huang, Jun [7 ,8 ]
Wang, Hailong [9 ,10 ]
Gao, Bin [3 ]
机构
[1] Jiangsu Acad Agr Sci, Key Lab Crop & Livestock Integrated Farming, Minist Agr, Recycling Agr Res Ctr, Nanjing, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Solid Organ Waste, Nanjing 210014, Jiangsu, Peoples R China
[3] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32606 USA
[4] Univ Florida, Soil & Water Sci Dept, Trop Res & Educ Ctr, Homestead, FL 33031 USA
[5] Univ Florida, Mid Florida Res & Educ Ctr, Apopka, FL 32703 USA
[6] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[7] Hualan Design & Consulting Grp Co Ltd, Nanning 530011, Peoples R China
[8] Guangxi Univ, Coll Civil Engn & Architecture, Nanning 530004, Peoples R China
[9] Foshan Univ, Sch Environm & Chem Engn, Foshan 528000, Guangdong, Peoples R China
[10] Zhejiang A&F Univ, Key Lab Soil Contaminat Bioremediat Zhejiang Prov, Hangzhou 311300, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium alginate; Pb(II); Cu(II); Cd(II); adsorption mechanisms; ZERO-VALENT IRON; CALCIUM-ALGINATE; AQUEOUS-SOLUTION; ADSORPTION PERFORMANCE; SODIUM ALGINATE; CROSS-LINKING; HEAVY-METALS; CHITOSAN; RECOVERY; BIOCHAR;
D O I
10.1016/j.jhazmat.2020.122664
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urea formaldehyde (UF) was grafted onto the backbone of alginate to prepare microbeads as an adsorbent for the removal of heavy metal ions from aqueous solutions. The expensive alginate was crosslinked with cheaper UF at different ratios (1: 2.5 similar to 1: 12.5) to produce sturdy alginate-UF beads at lower cost. Characterization results showed that UF modification enhanced the pore network and structural stability of the beads, which can be attributed to the reduced intermolecular forces and plentiful of nitrogen and oxygen donor atoms of the beads. The swelling of air-dried alginate-UF beads in different solutions was much lower than that of the unmodified alginate beads, confirming the improved stability. The replacement of alginate with UF at different ratios either did not affect or increased the adsorption of heavy metal ions (Pb2+, Cd2+, and Cu2+) on the beads. For example, the adsorption capacities of Pb2+, Cd2+, and Cu2+ on air-dried alginate-UF (1: 2.5) beads were 1.66, 0.61, and 0.80 mmol/g, which were 39.88%, 9.29%, and 9.52% higher than those of the corresponding unmodified alginate beads, respectively. The adsorption of heavy metals on the alginate-UF beads was mainly controlled by ion exchange, complexation, and electrostatic interaction mechanisms.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads
    Yang, Yuru
    Zeng, Lei
    Lin, Zongkun
    Jiang, Huabin
    Zhang, Aiping
    CARBOHYDRATE POLYMERS, 2021, 274
  • [2] Synthesis of sodium alginate composites and their removal performances toward Pb2+ and Cd2+
    Zhang, Yan
    Liang, Feng
    Qiao, Wenwen
    Chen, Zhan
    Li, Meng
    Dian, Pingge
    DESALINATION AND WATER TREATMENT, 2019, 158 : 199 - 206
  • [3] REMOVAL OF Cd2+, Cu2+ AND Pb2+ WITH A BURKINA FASO CLAY
    Sorgho, Brahima
    Mahamane, Abdoulkadri Ayouba
    Guel, Boubie
    Zerbo, Lamine
    Gomina, Moussa
    Blanchart, Philippe
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2016, 17 (04) : 365 - 379
  • [4] Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions
    Hu, Xiuyi
    Zhao, Mouming
    Song, Guosheng
    Huang, Huihua
    ENVIRONMENTAL TECHNOLOGY, 2011, 32 (07) : 739 - 746
  • [5] A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+
    Li, Wenqi
    Zhang, Liping
    Hu, Die
    Yang, Ran
    Zhang, Jie
    Guan, Ying
    Lv, Fanxun
    Gao, Hui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 187 : 922 - 930
  • [6] A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption
    Ma, Jianzhe
    Xia, Mingzhu
    Zhu, Sidi
    Wang, Fengyun
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 400
  • [7] Enhanced Removal of Pb2+, Cu2+, and Cd2+ by Amino-Functionalized Magnetite/Kaolin Clay
    Qin, Lilu
    Yan, Liangguo
    Chen, Jian
    Liu, Tiantian
    Yu, Haiqin
    Du, Bin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (27) : 7344 - 7354
  • [8] Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles
    Ge, Fei
    Li, Meng-Meng
    Ye, Hui
    Zhao, Bao-Xiang
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 211 : 366 - 372
  • [9] Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution
    Duan, Chunting
    Zhao, Ning
    Yu, Xiaolan
    Zhang, Xiaoyan
    Xu, Jian
    CELLULOSE, 2013, 20 (02) : 849 - 860
  • [10] Highly efficient Cd2+ and Cu2+ removal by MgO-modified tobermorite in aqueous solutions
    Qin, Juan
    Fang, Yeting
    Ou, Changjin
    Wang, Junyue
    Huang, Fang
    Wen, Qian
    Liao, Zhipeng
    Shi, Jian
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):