Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model

被引:82
作者
Xu, Lixin [1 ,2 ,3 ]
Lu, Jianbo [4 ]
Wang, Yuting [1 ,5 ]
机构
[1] Dalian Univ Technol, Inst Theoret Phys, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Coll Adv Sci & Technol, Dalian 116024, Peoples R China
[3] Korea Astron & Space Sci Inst, Taejon 305348, South Korea
[4] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
[5] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
来源
EUROPEAN PHYSICAL JOURNAL C | 2012年 / 72卷 / 02期
基金
中国国家自然科学基金;
关键词
PROBE WMAP OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; COSMOLOGICAL CONSTANT; CONSTRAINTS; SUPERNOVAE; PARAMETERS; DYNAMICS; LAMBDA;
D O I
10.1140/epjc/s10052-012-1883-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we revisit the generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as rho(GCG)/rho(GCG0) = [B-s +(1 - B-s) a(-3(1+alpha))](1/(1+alpha)), where alpha and B-s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literature. By using the Markov Chain Monte Carlo method, we find the results alpha = 0.00126(-0.00126-0.00126)(+0.000970+0.00268) and B-s = 0.775(-0.0161-0.0338)(+0.0161+0.0307).
引用
收藏
页码:1 / 6
页数:6
相关论文
共 59 条
[1]   SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION [J].
Amanullah, R. ;
Lidman, C. ;
Rubin, D. ;
Aldering, G. ;
Astier, P. ;
Barbary, K. ;
Burns, M. S. ;
Conley, A. ;
Dawson, K. S. ;
Deustua, S. E. ;
Doi, M. ;
Fabbro, S. ;
Faccioli, L. ;
Fakhouri, H. K. ;
Folatelli, G. ;
Fruchter, A. S. ;
Furusawa, H. ;
Garavini, G. ;
Goldhaber, G. ;
Goobar, A. ;
Groom, D. E. ;
Hook, I. ;
Howell, D. A. ;
Kashikawa, N. ;
Kim, A. G. ;
Knop, R. A. ;
Kowalski, M. ;
Linder, E. ;
Meyers, J. ;
Morokuma, T. ;
Nobili, S. ;
Nordin, J. ;
Nugent, P. E. ;
Ostman, L. ;
Pain, R. ;
Panagia, N. ;
Perlmutter, S. ;
Raux, J. ;
Ruiz-Lapuente, P. ;
Spadafora, A. L. ;
Strovink, M. ;
Suzuki, N. ;
Wang, L. ;
Wood-Vasey, W. M. ;
Yasuda, N. .
ASTROPHYSICAL JOURNAL, 2010, 716 (01) :712-738
[2]   WMAP and the generalized Chaplygin gas [J].
Amendola, L ;
Finelli, F ;
Burigana, C ;
Carturan, D .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2003, (07) :71-84
[3]  
[Anonymous], 2010, JCAP
[4]   Linear and nonlinear instabilities in unified dark energy models [J].
Avelino, P. P. ;
Beca, L. M. G. ;
Martins, C. J. A. P. .
PHYSICAL REVIEW D, 2008, 77 (06)
[5]   Dark degeneracy and interacting cosmic components [J].
Aviles, Alejandro ;
Cervantes-Cota, Jorge L. .
PHYSICAL REVIEW D, 2011, 84 (08)
[6]   Dark matter from dark energy-baryonic matter couplings [J].
Aviles, Alejandro ;
Cervantes-Cota, Jorge L. .
PHYSICAL REVIEW D, 2011, 83 (02)
[7]   ΛαDM:: Observational constraints on unified dark matter with constant speed of sound [J].
Balbi, Amedeo ;
Bruni, Marco ;
Quercellini, Claudia .
PHYSICAL REVIEW D, 2007, 76 (10)
[8]   WMAP five-year data constraints on the unified model of dark energy and dark matter [J].
Barreiro, T. ;
Bertolami, O. ;
Torres, P. .
PHYSICAL REVIEW D, 2008, 78 (04)
[9]   Are Chaplygin gases serious contenders for the dark energy?: art. no. 023515 [J].
Bean, R ;
Doré, O .
PHYSICAL REVIEW D, 2003, 68 (02)
[10]   Dynamics of perfect fluid unified dark energy models [J].
Beca, Luis M. G. ;
Avelino, Pedro P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 376 (03) :1169-1172