The forgetful map in rational K-theory

被引:0
作者
Graham, William [1 ]
机构
[1] Univ Georgia, Dept Math, Boyd Grad Studies Res Ctr, Athens, GA 30602 USA
关键词
K-theory; equivariant; equivariant K-theory; Riemann-Roch;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive algebraic group acting on a scheme X. Let R( G) denote the representation ring of G, and I subset of R( G) the ideal of virtual representations of rank 0. Let G( X) ( respectively, G( G, X)) denote the Grothendieck group of coherent sheaves ( respectively, G-equivariant coherent sheaves) on X. Merkurjev proved that if pi(1)( G) is torsion-free, then the forgetful map G( G, X) --> G( X) induces an isomorphism G(G, X)/IG(G, X) --> G(X). Although this map need not be an isomorphism if pi(1)( G) has torsion, we prove that without the assumption on pi(1)( G), the map G(G, X)/IG(G, X)circle times Q --> G(X) circle times Q is an isomorphism.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 1972, ELEMENTS MATH COMMUT
[2]  
Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
[3]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[4]  
Edidin D, 2000, DUKE MATH J, V102, P567
[5]  
EDIDIN D, 2007, ARXIVMATHAG0702671
[6]  
Fulton W., 1984, INTERSECTION THEORY, V2
[7]  
Merkurjev A. S., 1997, Algebra i Analiz, V9, P175
[8]  
Mumford D., 1994, GEOMETRIC INVARIANT, V34
[9]  
Thomason R., 1983, ANN MATH STUD, V113, P539