Corrosion performance of composite galvanic coatings with variable concentration of polymeric nano-aggregates and/or Cr(III) conversion layers

被引:5
作者
Koleva, D. A. [1 ]
Taheri, P. [2 ]
Tsvetkova, N. [3 ]
Boshkov, N. [3 ]
van Breugel, K. [1 ]
de Wit, J. H. W. [2 ]
Mol, J. M. C. [2 ]
机构
[1] Delft Univ Technol, Fac CiTG, Dept Mater & Environm, Stevinweg 1, NL-2628 CN Delft, Netherlands
[2] Delft Univ Technol, Fac 3mE, Surfaces & Interfaces, NL-2628 CD Delft, Netherlands
[3] Bulgarian Acad Sci, Inst Phys Chem, Sofia, Bulgaria
来源
HIGH RESOLUTION CHARACTERIZATION OF CORROSION PROCESSES 2 | 2011年 / 33卷 / 35期
关键词
ZN-CO; PROTECTIVE ABILITY; ELECTRODEPOSITION; BEHAVIOR; ALLOYS; ZINC; STEEL; DEPOSITION;
D O I
10.1149/1.3577756
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper reports on the corrosion performance of composite zinc layers (similar to 8 mu m) on a steel substrate, considering the influence of nano-aggregates and Cr(III) conversion layers, compared to control (only Zn layers) conditions. The main factors, influencing the corrosion performance of Zn in this study are: a) the effect of two concentrations of polymeric nano-aggregates (0.1g/l and 0.3g/l PEO113-b-PS218 core-shell micelles in the starting electrolyte); b) the effect of Cr(III) conversion layers on both pure Zn and composite Zn layers. For most of the hereby investigated time intervals i.e. treatment in aerated 5% NaCl from 2h until 120h, the composite coatings present higher corrosion resistance, especially within longer treatment. Corrosion current densities are similar to Zn, however, anodic currents are significantly lower. After treatment in NaCl, the composite Zn coatings present a more homogenous product layer, formed as a result of the presence of the nano-aggregates. The additional Cr(III) treatment does not significantly improve the corrosion resistance of the composite coatings for the hereby investigated time intervals.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 18 条
[1]   Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles [J].
Boshkov, N. ;
Tsvetkova, N. ;
Petrov, P. ;
Koleva, D. ;
Petrov, K. ;
Avdeev, G. ;
Tsvetanov, Ch. ;
Raichevsky, G. ;
Raicheff, R. .
APPLIED SURFACE SCIENCE, 2008, 254 (17) :5618-5625
[2]   Influence of the alloying component on the protective ability of some zinc galvanic coatings [J].
Boshkov, N ;
Petrov, K ;
Kovacheva, D ;
Vitkova, S ;
Nemska, S .
ELECTROCHIMICA ACTA, 2005, 51 (01) :77-84
[3]   Composition of the corrosion products of galvanic alloys Zn-Co and their influence on the protective ability [J].
Boshkov, N ;
Petrov, K ;
Vitkova, S ;
Nemska, S ;
Raichevsky, G .
SURFACE & COATINGS TECHNOLOGY, 2002, 157 (2-3) :171-178
[4]   Kinetics of electrodeposition of Zn-Co alloy using mild steel rotating disc electrode [J].
Carpenter, D. E. O. S. ;
Farr, J. P. G. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2007, 85 (06) :298-305
[5]   Development of Zn-Ni-Cd coatings by pulse electrodeposition process [J].
Ganesan, Prabhu ;
Kumaraguru, Swaminatha P. ;
Popov, Branko N. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (06) :3658-3669
[6]   Electrochemical deposition of zinc-polystyrene composites in the presence of surfactants [J].
Hovestad, A ;
Heesen, RJCHL ;
Janssen, LJJ .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1999, 29 (03) :331-338
[7]   Electrochemical corrosion behaviour and surface morphology of electrodeposited zinc, zinc-cobalt and their composite coatings [J].
Koleva, D ;
Boshkov, N ;
Raichevski, G ;
Veleva, L .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2005, 83 (04) :188-193
[8]  
Koleva D.A., 2010, SURFACE COA IN PRESS
[9]  
KOLEVA DA, 2008, ECS T, V11, P27
[10]   Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acidic chloride electrolytes [J].
Lodhi, Z. F. ;
Mol, J. M. C. ;
Hovestad, A. ;
Terryn, H. ;
de Wit, J. H. W. .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (01) :84-90