Analytic model for the dynamic Z-pinch

被引:12
|
作者
Piriz, A. R. [1 ,2 ]
Sun, Y. B. [1 ,2 ,4 ]
Tahir, N. A. [3 ]
机构
[1] Univ Castilla La Mancha, CYTEMA, ETSI Ind, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, Inst Invest Energet INEI, Ciudad Real 13071, Spain
[3] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany
[4] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
关键词
RAYLEIGH-TAYLOR INSTABILITY; NEUTRON-PRODUCTION; SUPPRESSION; PHYSICS; LOADS;
D O I
10.1063/1.4922078
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting cases of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Staged Z-pinch radiation-hydrodynamic simulations on a 20-MA driver
    Higginson, D. P.
    Link, A. J.
    Ney, P.
    Rahman, H. U.
    Ruskov, E.
    Tummel, K.
    PHYSICS OF PLASMAS, 2024, 31 (03)
  • [42] Extended magnetohydrodynamics simulations of thin-foil Z-pinch implosions with comparison to experiments
    Woolstrum, J. M.
    Yager-Elorriaga, D. A.
    Campbell, P. C.
    Jordan, N. M.
    Seyler, C. E.
    McBride, R. D.
    PHYSICS OF PLASMAS, 2020, 27 (09)
  • [43] A Review of the Gas-Puff Z-Pinch as an X-Ray and Neutron Source
    Giuliani, John L.
    Commisso, Robert J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (08) : 2385 - 2453
  • [44] Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere
    Klir, D.
    Shishlov, A. V.
    Kubes, P.
    Rezac, K.
    Fursov, F. I.
    Kokshenev, V. A.
    Kovalchuk, B. M.
    Kravarik, J.
    Kurmaev, N. E.
    Labetsky, A. Yu
    Ratakhin, N. A.
    PHYSICS OF PLASMAS, 2012, 19 (03)
  • [45] Radiative cooling of two-component wire-array Z-pinch plasma
    Ivanov, V. V.
    Mancini, R. C.
    Papp, D.
    Hakel, P.
    Durmaz, T.
    Florido, R.
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [46] Enhanced keV peak power and yield using twisted pair "cables" in a z-pinch
    Hoyt, C. L.
    Knapp, P. F.
    Pikuz, S. A.
    Shelkovenko, T. A.
    Cahill, A. D.
    Gourdain, P. -A.
    Greenly, J. B.
    Kusse, B. R.
    Hammer, D. A.
    APPLIED PHYSICS LETTERS, 2012, 100 (24)
  • [47] Implosion characteristics of gas-puff Z-pinch with a single-shell nozzle
    Ren Xiao-Dong
    Huang Xian-Bin
    Zhou Shao-Tong
    Zhang Si-Qun
    Li Jing
    Yang Li-Bing
    Li Ping
    ACTA PHYSICA SINICA, 2009, 58 (10) : 7067 - 7073
  • [48] Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion
    Chu, Y. Y.
    Wang, Z.
    Qi, J. M.
    Wu, F. Y.
    Li, Z. H.
    NUCLEAR FUSION, 2017, 57 (06)
  • [49] The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell
    Ning, Cheng
    Feng, Zhixing
    Xue, Chuang
    Li, Baiwen
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [50] Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator
    Tangri, V.
    Harvey-Thompson, A. J.
    Giuliani, J. L.
    Thornhill, J. W.
    Velikovich, A. L.
    Apruzese, J. P.
    Ouart, N. D.
    Dasgupta, A.
    Jones, B.
    Jennings, C. A.
    PHYSICS OF PLASMAS, 2016, 23 (10)