TOPOLOGY OF RANDOM RIGHT ANGLED ARTIN GROUPS

被引:6
作者
Costa, Armindo [1 ]
Farber, Michael [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Random group; right angled Artin group; topological complexity; clique; bi-clique; HOMOLOGICAL CONNECTIVITY;
D O I
10.1142/S1793525311000490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study topological invariants of a class of random groups. Namely, we study right angled Artin groups associated to random graphs and investigate their Betti numbers, cohomological dimension and topological complexity. The latter is a numerical homotopy invariant reflecting complexity of motion planning algorithms in robotics. We show that the topological complexity of a random right angled Artin group assumes, with probability tending to one, at most three values, when n -> infinity. We use a result of Cohen and Pruidze which expresses the topological complexity of right angled Artin groups in combinatorial terms. Our proof deals with the existence of bi-cliques in random graphs.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 33 条
[1]  
Alon N, 2008, PROBABILISTIC METHOD
[2]   THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES [J].
Babson, Eric ;
Hoffman, Christopher ;
Kahle, Matthew .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :1-28
[3]  
BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V80, P419, DOI 10.1017/S0305004100053056
[4]  
Bollobas B., 2008, RANDOM GRAPHS
[5]  
Bollobas B., 1982, LONDON MATH SOC LECT, V52, P80
[6]  
Charney R., ARXIV10063378
[7]   An introduction to right-angled Artin groups [J].
Charney, Ruth .
GEOMETRIAE DEDICATA, 2007, 125 (01) :141-158
[8]   Motion planning in tori [J].
Cohen, Daniel C. ;
Pruidze, Goderdzi .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :249-262
[9]  
Costa A., ARXIV10064229
[10]  
Costa A., COMMUN CONT IN PRESS