TOPOLOGY OF RANDOM RIGHT ANGLED ARTIN GROUPS

被引:6
作者
Costa, Armindo [1 ]
Farber, Michael [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Random group; right angled Artin group; topological complexity; clique; bi-clique; HOMOLOGICAL CONNECTIVITY;
D O I
10.1142/S1793525311000490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study topological invariants of a class of random groups. Namely, we study right angled Artin groups associated to random graphs and investigate their Betti numbers, cohomological dimension and topological complexity. The latter is a numerical homotopy invariant reflecting complexity of motion planning algorithms in robotics. We show that the topological complexity of a random right angled Artin group assumes, with probability tending to one, at most three values, when n -> infinity. We use a result of Cohen and Pruidze which expresses the topological complexity of right angled Artin groups in combinatorial terms. Our proof deals with the existence of bi-cliques in random graphs.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 33 条
  • [1] Alon N, 2008, PROBABILISTIC METHOD
  • [2] THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES
    Babson, Eric
    Hoffman, Christopher
    Kahle, Matthew
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) : 1 - 28
  • [3] BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V80, P419, DOI 10.1017/S0305004100053056
  • [4] Bollobas B., 2008, RANDOM GRAPHS
  • [5] Bollobas B., 1982, LONDON MATH SOC LECT, V52, P80
  • [6] Charney R., ARXIV10063378
  • [7] An introduction to right-angled Artin groups
    Charney, Ruth
    [J]. GEOMETRIAE DEDICATA, 2007, 125 (01) : 141 - 158
  • [8] Motion planning in tori
    Cohen, Daniel C.
    Pruidze, Goderdzi
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 249 - 262
  • [9] Costa A., ARXIV10064229
  • [10] Costa A., COMMUN CONT IN PRESS