Fabrication and Biocompatibility of Core-Shell Structured Magnetic Fibrous Scaffold

被引:38
作者
Li, Jingguo [1 ]
Li, Zhanrong [1 ]
Chu, Dandan [1 ]
Jin, Lin [1 ,2 ]
Zhang, Xingcai [3 ]
机构
[1] Zhengzhou Univ, Peoples Hosp, Henan Prov Peoples Hosp, Zhengzhou 450003, Henan, Peoples R China
[2] Zhoukou Normal Univ, Int Joint Res Lab Biomed Nanomat Henan, Henan Key Lab Rare Earth Funct Mat, Zhoukou 466001, Peoples R China
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fibrous Scaffold; Core-Shell Structure; Magnetic Performance; BMSCs; Tissue Engineering; STEM-CELLS; NANOFIBERS; STIMULATION; BEHAVIOR; OXIDE; HYDROGEL; GROWTH; FIELD; DRUG; FILM;
D O I
10.1166/jbn.2019.2701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, various magnetic bio-materials with physical and morphological cues have been used in biomedical area due to their advantageous characteristics. As one class of them, magnetic fibrous scaffolds have attracted many researchers' interests because they have an important positive impact on cellular growth behavior. They provide various physical cues to regulate the regeneration and repair of damaged tissue, and promote new tissue formation. In this study, we developed core-shell structured magnetic fibers (3D CS-MFs) using cooperative assembly method the combination with electrospinning technology. The obtained magnetic 3D CS-MFs displayed excellent magnetic performance, biocompatibility, and provided a desirable microenvironment for model cells (bone marrow mesenchymal stem cells, BMSCs) growth. More importantly, BMSCs exhibited excellent viability and 3D growth. The novel preparation method will greatly enhance the potential application of magnetic fibrous scaffold in the biomedical area, such as drug release, and tissue engineering.
引用
收藏
页码:500 / 506
页数:7
相关论文
共 42 条
[1]   Ferroelectric Switching in Multiferroic Magnetite (Fe3O4) Thin Films [J].
Alexe, Marin ;
Ziese, Michael ;
Hesse, Dietrich ;
Esquinazi, Pablo ;
Yamauchi, Kunihiko ;
Fukushima, Tetsuya ;
Picozzi, Silvia ;
Goesele, Ulrich .
ADVANCED MATERIALS, 2009, 21 (44) :4452-+
[2]   Role of Bioactive 3D Hybrid Fibrous Scaffolds on Mechanical Behavior and Spatiotemporal Osteoblast Gene Expression [J].
Allo, Bedilu A. ;
Lin, Shigang ;
Mequanint, Kibret ;
Rizkalla, Amin S. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :7574-7583
[3]   Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration [J].
Antman-Passig, Merav ;
Shefi, Orit .
NANO LETTERS, 2016, 16 (04) :2567-2573
[4]  
Benfenati V, 2013, NAT MATER, V12, P672, DOI [10.1038/NMAT3630, 10.1038/nmat3630]
[5]   Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues [J].
Betsch, Marcel ;
Cristian, Catalin ;
Lin, Ying-Ying ;
Blaeser, Andreas ;
Schoeneberg, Jan ;
Vogt, Michael ;
Buhl, Eva Miriam ;
Fischer, Horst ;
Campos, Daniela Filipa Duarte .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (21)
[6]   Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold [J].
Blakeney, Bryan A. ;
Tambralli, Ajay ;
Anderson, Joel M. ;
Andukuri, Adinarayana ;
Lim, Dong-Jin ;
Dean, Derrick R. ;
Jun, Ho-Wook .
BIOMATERIALS, 2011, 32 (06) :1583-1590
[7]   Responses of MSCs to 3D Scaffold Matrix Mechanical Properties under Oscillatory Perfusion Culture [J].
Chen, Guobao ;
Xu, Rui ;
Zhang, Chang ;
Lv, Yonggang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1207-1218
[8]   Tunable Stress Relaxation Behavior of an Alginate-Polyacrylamide Hydrogel: Comparison with Muscle Tissue [J].
Fitzgerald, Martha M. ;
Bootsma, Katherine ;
Berberich, Jason A. ;
Sparks, Jessica L. .
BIOMACROMOLECULES, 2015, 16 (05) :1497-1505
[9]   Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy [J].
GhavamiNejad, Amin ;
Sasikala, Arathyram Ramachandra Kurup ;
Unnithan, Afeesh Rajan ;
Thomas, Reju George ;
Jeong, Yong Yeon ;
Vatankhah-Varnoosfaderani, Mohammad ;
Stadler, Florian J. ;
Park, Chan Hee ;
Kim, Cheol Sang .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (19) :2867-2875
[10]   A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance [J].
Hou, Bao-Hua ;
Wang, Ying-Ying ;
Guo, Jin-Zhi ;
Zhang, Yu ;
Ning, Qiu-Li ;
Yang, Yang ;
Li, Wen-Hao ;
Zhang, Jing-Ping ;
Wang, Xin-Long ;
Wu, Xing-Long .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3581-3589