Variation of the Bacterial Community in the Rhizoplane Iron Plaque of the Wetland Plant Typha latifolia

被引:11
作者
Chi, Haochun [1 ]
Yang, Lu [1 ]
Yang, Wenjing [1 ]
Li, Yuanyuan [1 ]
Chen, Ziwu [1 ]
Huang, Lige [1 ]
Chao, Yuanqing [1 ,2 ,3 ]
Qiu, Rongliang [1 ,2 ,3 ]
Wang, Shizhong [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Environm Pollut Control &, Guangzhou 510275, Guangdong, Peoples R China
[3] Guangdong Prov Engn Res Ctr Heavy Met Contaminate, Guangzhou 510275, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
wetland; mine tailing; iron plaque; Typha latifolia; bacterial community; RICE FIELD SOIL; MICROBIAL COMMUNITY; HEAVY-METALS; SP NOV; ACCUMULATION; DIVERSITY; ROOTS;
D O I
10.3390/ijerph15122610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The survival of wetland plants in iron, sulfur and heavy metals-rich mine tailing ponds has been commonly attributed to the iron plaque (IP) on the root surface that acts as a protective barrier. However, the contribution of bacteria potentially regulates the iron-sulfur cycle and heavy metal exclusion at the root surface has not been studied in depth, particularly from a microbial ecology perspective. In this study, a pot experiment using Typha latifolia, a typical wetland plant, in non-polluted soil (NP) and tailing soil (T) was conducted. Samples from four zones, comprising non-rhizosphere soil (NR), rhizosphere soil (R) and internal (I) and external (E) layers of iron plaque, were collected from the NP and T and analyzed by 16S rRNA sequencing. Simpson index of the genus level showed greater diversities of bacterial community in the NP and its I zone is the most important part of the rhizosphere. PICRUSt predicted that the I zones in both NP and T harbored most of the functional genes. Specifically, functional genes related to sulfur relay and metabolism occurred more in the I zone in the T, whereas those related to iron acquisition and carbon and nitrogen circulation occurred more in the I zone in the NP. Analysis of dominant bacterial communities at genus level showed highest abundance of heavy metal resistant genus Burkholderia in the E zones in both soils, indicating that heavy metal resistance of Typha latifolia driven by Burkholderia mainly occurred at the external layer of IP. Moreover, many bacterial genera, such as Acidithiobacillus, Ferritrophicum, Thiomonas, Metallibacterium and Sideroxydans, involved in iron and sulfur metabolisms were found in the T and most showed higher abundance in the I zone than in the other zones. This work, as the first endeavor to separate the iron plaque into external and internal layers and investigate the variations of the bacterial communities therein, can provide an insight for further understanding the survival strategy of wetland plants, e.g., Typha latifolia, in extreme environment.
引用
收藏
页数:17
相关论文
共 45 条
[1]   The biofilm matrix [J].
Flemming, Hans-Curt ;
Wingender, Jost .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (09) :623-633
[2]   Structure, Function, and Evolution of the Thiomonas spp. Genome [J].
Arsene-Ploetze, Florence ;
Koechler, Sandrine ;
Marchal, Marie ;
Coppee, Jean-Yves ;
Chandler, Michael ;
Bonnefoy, Violaine ;
Brochier-Armanet, Celine ;
Barakat, Mohamed ;
Barbe, Valerie ;
Battaglia-Brunet, Fabienne ;
Bruneel, Odile ;
Bryan, Christopher G. ;
Cleiss-Arnold, Jessica ;
Cruveiller, Stephane ;
Erhardt, Mathieu ;
Heinrich-Salmeron, Audrey ;
Hommais, Florence ;
Joulian, Catherine ;
Krin, Evelyne ;
Lieutaud, Aurelie ;
Lievremont, Didier ;
Michel, Caroline ;
Muller, Daniel ;
Ortet, Philippe ;
Proux, Caroline ;
Siguier, Patricia ;
Roche, David ;
Rouy, Zoe ;
Salvignol, Gregory ;
Slyemi, Djamila ;
Talla, Emmanuel ;
Weiss, Stephanie ;
Weissenbach, Jean ;
Medigue, Claudine ;
Bertin, Philippe N. .
PLOS GENETICS, 2010, 6 (02)
[3]   Acidobactetia phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum [J].
Barns, Susan M. ;
Cain, Elizabeth C. ;
Sommerville, Leslie ;
Kuske, Cheryl R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (09) :3113-3116
[4]   Devosia yakushimensis sp nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi [J].
Bautista, Vernans V. ;
Monsalud, Rosario G. ;
Yokota, Akira .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2010, 60 :627-632
[5]  
Bridge TAM, 2000, GEOMICROBIOL J, V17, P193
[6]   Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].
Bulgarelli, Davide ;
Rott, Matthias ;
Schlaeppi, Klaus ;
van Themaat, Emiel Ver Loren ;
Ahmadinejad, Nahal ;
Assenza, Federica ;
Rauf, Philipp ;
Huettel, Bruno ;
Reinhardt, Richard ;
Schmelzer, Elmon ;
Peplies, Joerg ;
Gloeckner, Frank Oliver ;
Amann, Rudolf ;
Eickhorst, Thilo ;
Schulze-Lefert, Paul .
NATURE, 2012, 488 (7409) :91-95
[7]   Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation [J].
Castelle, Cindy J. ;
Brown, Christopher T. ;
Thomas, Brian C. ;
Williams, Kenneth H. ;
Banfield, Jillian F. .
SCIENTIFIC REPORTS, 2017, 7
[8]   The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sediments [J].
Chabbi, A ;
Hines, ME ;
Rumpel, C .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2001, 46 (03) :237-245
[9]   Structure, Variation, and Co-occurrence of Soil Microbial Communities in Abandoned Sites of a Rare Earth Elements Mine [J].
Chao, Yuanqing ;
Liu, Wenshen ;
Chen, Yanmei ;
Chen, Wenhui ;
Zhao, Lihua ;
Ding, Qiaobei ;
Wang, Shizhong ;
Tang, Ye-Tao ;
Zhang, Tong ;
Qiu, Rong-Liang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (21) :11481-11490
[10]   Structural development and assembly patterns of the root-associated microbiomes during phytoremediation [J].
Chen, Yanmei ;
Ding, Qiaobei ;
Chao, Yuanqing ;
Wei, Xiange ;
Wang, Shizhong ;
Qiu, Rongliang .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 644 :1591-1601