Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol-gel dip coating approach

被引:64
作者
Hilliard, Samantha [1 ,2 ]
Baldinozzi, Guido [3 ]
Friedrich, Dennis [4 ]
Kressman, Ephane [5 ]
Strub, Henri [3 ]
Artero, Vincent [2 ]
Laberty-Robert, Christel [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, Coll France,CNRS, Lab Chim Mat Condensee Paris, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Grenoble Alpes, CNRS, CEA, Lab Chim & Biol Metaux, 17 Rue Martyrs, F-38054 Grenoble 9, France
[3] CEA, DEN, DANS,LRC, SRMA,CARMEN,LA2M, F-91191 Gif Sur Yvette, France
[4] Total Energies Nouvelles, La Def, 24 Cours Michelet, F-92800 Puteaux La Defense, France
[5] Helmholtz Zentrum Berlin Mat & Energie Gmbh, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany
关键词
OXYGEN EVOLUTION CATALYST; TUNGSTEN TRIOXIDE FILMS; CONVERSION EFFICIENCY; AQUEOUS-ELECTROLYTES; PHYSICAL-PROPERTIES; HYDROGEN-PRODUCTION; OXIDATION; PHOTOELECTROLYSIS; BIVO4; PHOTOOXIDATION;
D O I
10.1039/c6se00001k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile and cost-efficient method to fabricate a mesoporous structured WO3 photoanode was implemented for use in a tandem dual photosystem water splitting photoelectrochemical cell. Semi-transparent thin films of tungsten trioxide were fabricated by sol-gel process, incorporating a block co-polymer to induce a template-directed mesoporous structure. These thin films are deposited by dip coating onto transparent conducting oxide substrates and crystallized at a low temperature of 400 degrees C in air. These WO3 photoanodes exhibit a photocurrent of up to 0.6 mA cm(-2) in potassium phosphate buffers of pH 2, 4, and 6 at 1.23 V vs. RHE under 300 mW cm(-2) visible (400-900 nm) light irradiation with a faradaic efficiency of up to 75%. Furthermore, we have demonstrated that corrosion occurs in electrolytes of pH > 4. The faradaic efficiencies in varying pH solutions suggest that parasitic redox reactions occurs in acidic conditions, limiting the O-2 production and demonstrating the need for stable surface co-catalysts to increase faradaic efficiencies. In neutral conditions, protective layers and/or co-catalysts are needed for increasing WO3 photoanode stability.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 70 条
[41]   Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting [J].
Liu, Xien ;
Wang, Fengying ;
Wang, Qing .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (22) :7894-7911
[42]   FURTHER REFINEMENT OF STRUCTURE OF WO3 [J].
LOOPSTRA, BO ;
RIETVELD, HM .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1969, B 25 :1420-&
[43]   A Self-Healing Oxygen-Evolving Catalyst [J].
Lutterman, Daniel A. ;
Surendranath, Yogesh ;
Nocera, Daniel G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3838-+
[44]   Progress in sputtered tungsten trioxide for photoelectrode applications [J].
Marsen, Bjorn ;
Miller, Eric L. ;
Paluselli, Daniela ;
Rocheleau, Richard E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3110-3115
[45]   Photoelectrochemical oxidation of anions by WO3 in aqueous and nonaqueous electrolytes [J].
Mi, Qixi ;
Coridan, Robert H. ;
Brunschwig, Bruce S. ;
Gray, Harry B. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2646-2653
[46]   A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes [J].
Mi, Qixi ;
Zhanaidarova, Almagul ;
Brunschwig, Bruce S. ;
Gray, Harry B. ;
Lewis, Nathan S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5694-5700
[47]   Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting [J].
Nellist, Michael R. ;
Laskowski, Forrest A. L. ;
Lin, Fuding ;
Mills, Thomas J. ;
Boettcher, Shannon W. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (04) :733-740
[48]  
Pankove J. I., 1975, OPTICAL PROCESSES SE
[49]   Progress in bismuth vanadate photoanodes for use in solar water oxidation [J].
Park, Yiseul ;
McDonald, Kenneth J. ;
Choi, Kyoung-Shin .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2321-2337
[50]   Solar hydrogen production by water splitting with a conversion efficiency of 18% [J].
Peharz, Gerhard ;
Dimroth, Frank ;
Wittstadt, Ursula .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3248-3252