GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds

被引:0
作者
He, Zifen [1 ]
Zhu, Shouye [1 ]
Huang, Ying [1 ]
Zhang, Yinhui [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Yunnan, Peoples R China
基金
美国国家科学基金会;
关键词
semantic segmentation; 3D point clouds; convolutional neural netwrok; weakly supervised;
D O I
10.1587/transinf.2021EDP7134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method for weakly supervised semantic segmentation of 3D point clouds using a novel graph and edge convolutional neural network (GECNN) towards 1% and 10% point cloud with labels. Our general framework facilitates semantic segmentation by encoding both global and local scale features via a parallel graph and edge aggregation scheme. More specifically, global scale graph structure cues of point clouds are captured by a graph convolutional neural network, which is propagated from pairwise affinity representation over the whole graph established in a d-dimensional feature embedding space. We integrate local scale features derived from a dynamic edge feature aggregation convolutional neural networks that allows us to fusion both global and local cues of 3D point clouds. The proposed GECNN model is trained by using a comprehensive objective which consists of incomplete, inexact, self-supervision and smoothness constraints based on partially labeled points. The proposed approach enforces global and local consistency constraints directly on the objective losses. It inherently handles the challenges of segmenting sparse 3D point clouds with limited annotations in a large scale point cloud space. Our experiments on the ShapeNet and S3DIS benchmarks demonstrate the effectiveness of the proposed approach for efficient (within 20 epochs) learning of large scale point cloud semantics despite very limited labels.
引用
收藏
页码:2237 / 2243
页数:7
相关论文
共 11 条
[1]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399
[2]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232
[3]   WEAKLY SUPERVISED SEGMENTATION-AIDED CLASSIFICATION OF URBAN SCENES FROM 3D LIDAR POINT CLOUDS [J].
Guinard, Stephan ;
Landrieu, Loic .
ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1) :151-157
[4]   RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds [J].
Hu, Qingyong ;
Yang, Bo ;
Xie, Linhai ;
Rosa, Stefano ;
Guo, Yulan ;
Wang, Zhihua ;
Trigoni, Niki ;
Markham, Andrew .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11105-11114
[5]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587
[6]   Semantic Segmentation of 3D LiDAR Data in Dynamic Scene Using Semi-Supervised Learning [J].
Mei, Jilin ;
Gao, Biao ;
Xu, Donghao ;
Yao, Wen ;
Zhao, Xijun ;
Zhao, Huijing .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (06) :2496-2509
[7]   KPConv: Flexible and Deformable Convolution for Point Clouds [J].
Thomas, Hugues ;
Qi, Charles R. ;
Deschaud, Jean-Emmanuel ;
Marcotegui, Beatriz ;
Goulette, Francois ;
Guibas, Leonidas J. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6420-6429
[8]   Dynamic Graph CNN for Learning on Point Clouds [J].
Wang, Yue ;
Sun, Yongbin ;
Liu, Ziwei ;
Sarma, Sanjay E. ;
Bronstein, Michael M. ;
Solomon, Justin M. .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (05)
[9]   Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds [J].
Wei, Jiacheng ;
Lin, Guosheng ;
Yap, Kim-Hui ;
Hung, Tzu-Yi ;
Xie, Lihua .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4383-4392
[10]   Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels [J].
Xu, Xun ;
Lee, Gim Hee .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :13703-13712