Cluster analysis of microscopic spatio-temporal patterns of tourists' movement behaviors in mountainous scenic areas using open GPS-trajectory data

被引:49
作者
Liu, Wenbao [1 ]
Wang, Bingxue [1 ]
Yang, Yang [2 ]
Mou, Naixia [1 ]
Zheng, Yunhao [3 ]
Zhang, Lingxian [1 ]
Yang, Tengfei [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
[2] Temple Univ, Dept Tourism & Hospitality Management, Philadelphia, PA 19122 USA
[3] Peking Univ, Inst Remote Sensing & Geog Informat Syst, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Open GPS-Trajectory data; Movement pattern; Spatio-temporal behaviors; Time geography; Trajectory classification; Spatial gridding; Stay time; Transfer probability; Time allocation; SPATIAL-PATTERNS; CHINESE TOURISTS; NATIONAL-PARK; TRACKING DATA; TRAVEL; DESTINATION; SPACE; FLOW;
D O I
10.1016/j.tourman.2022.104614
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding spatio-temporal patterns of tourist movement behaviors is vital for Destination Management Departments (DMDs) on destination planning, marketing, and resource management. This study uses open GPS-trajectory data to analyze the microscopic spatio-temporal patterns of tourists' movement behaviors in Mount Huashan in China. Two major measures, Markov chains and cluster analysis, are used to cluster tourists into groups to show their spatio-temporal movement behaviors within the study site. The Markov chain analysis unveiled three kinds of spatial patterns on microscopic tourists' movement: "proximity transfer", "span transfer" and "hub transfer", while the cluster analysis further demonstrated three kinds of microscopic spatio-temporal patterns: "day-climbing", "night-climbing", and "full-day sightseeing". These results provide vital implications for tourism management of the mountainous scenic areas in general and in Mount Huashan in particular.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Spatio-temporal similarity of network-constrained moving object trajectories using sequence alignment of travel locations [J].
Abraham, Sajimon ;
Lal, P. Sojan .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2012, 23 :109-123
[2]   Measuring tourist satisfaction with Kenya's wildlife safari: a case study of Tsavo West National Park [J].
Akama, JS ;
Kieti, DM .
TOURISM MANAGEMENT, 2003, 24 (01) :73-81
[3]  
Albanna B. H., 2015, SEMANTIC TRAJECTORIE, DOI [10.1007/978-3-319-16667-4, DOI 10.1007/978-3-319-16667-4]
[4]   Analysis of tourist behaviour based on the tracking data collected using a mobile communication instrument [J].
Asakura, Yasuo ;
Iryo, Takamasa .
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2007, 41 (07) :684-690
[5]   The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades [J].
Batty, M ;
Desyllas, J ;
Duxbury, E .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2003, 17 (07) :673-697
[6]   Using GPS Supported Speed Analysis to Determine Spatial Visitor Behaviour [J].
Bauder, Michael .
INTERNATIONAL JOURNAL OF TOURISM RESEARCH, 2015, 17 (04) :337-346
[7]   Determination of tourist flow patterns in a low mountain study area [J].
Benkhard, Borbala .
TOURISM & MANAGEMENT STUDIES, 2018, 14 (03) :19-31
[8]   How online reviews of destination responsibility influence tourists' evaluations: an exploratory study of mountain tourism [J].
Bigne, Enrique ;
Zanfardini, Marina ;
Andreu, Luisa .
JOURNAL OF SUSTAINABLE TOURISM, 2020, 28 (05) :686-704
[9]   Temporal Activity Patterns of Theme Park Visitors [J].
Birenboim, Amit ;
Anton-Clave, Salvador ;
Paolo Russo, Antonio ;
Shoval, Noam .
TOURISM GEOGRAPHIES, 2013, 15 (04) :601-619
[10]   USING GEOGRAPHIC INFORMATION SYSTEM TO VISUALIZE TRAVEL PATTERNS AND MARKET RESEARCH DATA [J].
Chancellor, Charles ;
Cole, Shu .
JOURNAL OF TRAVEL & TOURISM MARKETING, 2008, 25 (3-4) :341-354