Deep Learning based Frameworks for Image Super-Resolution and Noise-Resilient Super-Resolution

被引:0
|
作者
Sharma, Manoj [1 ]
Chaudhury, Santanu [1 ]
Lall, Brejesh [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi 110016, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our paper is motivated from the advancement in deep learning algorithms for various computer vision problems. We are proposing a novel end-to-end deep learning based framework for image super-resolution. This framework simultaneously calculates the convolutional features of low-resolution (LR) and high-resolution (HR) image patches and learns the non-linear function that maps these convolutional features of LR image patches to their corresponding HR image patches convolutional features. Here, proposed deep learning based image super-resolution architecture is termed as coupled deep convolutional auto-encoder ( CDCA) which provides state-of-the-art results. Super-resolution of a noisy/distorted LR images results in noisy/distorted HR images, as super-resolution process gives rise to spatial correlation in the noise, and further, it cannot be de-noised successfully. Traditional noise resilient image super-resolution methods utilize a de-noising algorithm prior to super-resolution but de-noising process gives rise to loss of some high-frequency information (edges and texture details) and super-resolution of the resultant image provides HR image with missing edges and texture information. We are also proposing a novel end-to-end deep learning based framework to obtain noise resilient image super-resolution. Proposed end-to-end deep learning based framework for noise resilient super-resolution simultaneously perform image de-noising and super-resolution as well as preserves textural details. First, stacked sparse de-noising auto-encoder (SSDA) was learned for LR image de-noising and proposed CDCA was learned for image superresolution. Then, both image de-noising and super-resolution networks were cascaded. This cascaded deep learning network was employed as one integral network where pre-trained weights were serving as initial weights. The integral network was end-toend trained or fine-tuned on a database having noisy, LR image as an input and target as an HR image. In fine-tuning, all layers of the combined end-to-end network was jointly optimized to perform image de-noising and super-resolution simultaneously. Experimental results show that proposed noise resilient superresolution framework outperforms the conventional and state-of-the-art approaches in terms of PSNR and SSIM metrics.
引用
收藏
页码:744 / 751
页数:8
相关论文
共 50 条
  • [1] A Noise-Resilient Super-Resolution framework to boost OCR performance
    Sharma, Manoj
    Ray, Anupama
    Chaudhury, Santanu
    Lall, Brejesh
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 466 - 471
  • [2] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [3] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [4] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [5] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [6] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [7] A brief survey on deep learning based image super-resolution
    祝晓斌
    Li Shanshan
    Wang Lei
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [8] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [9] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [10] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641