On a connection between kernel PCA and metric multidimensional scaling

被引:95
作者
Williams, CKI [1 ]
机构
[1] Univ Edinburgh, Div Informat, Edinburgh EH1 2QL, Midlothian, Scotland
关键词
metric multidimensional scaling; MDS; kernel PCA; eigenproblem;
D O I
10.1023/A:1012485807823
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this note we show that the kernel PCA algorithm of Scholkopf, Smola, and Muller (Neural Computation, 10, 1299-1319.) can be interpreted as a form of metric multidimensional scaling (MDS) when the kernel function k(x, y) is isotropic, i.e. it depends only on parallel tox - y parallel to. This leads to a metric MDS algorithm where the desired configuration of points is found via the solution of an eigenproblem rather than through the iterative optimization of the stress objective function. The question of kernel choice is also discussed.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 11 条
[1]  
[Anonymous], HARMONIC ANAL SEMIGR
[2]  
[Anonymous], 1979, Multivariate analysis
[3]  
Cox T. F., 1994, MULTIDIMENSIONAL SCA
[4]  
CRITCHLEY F, 1978, COMPSTAT 1978
[5]  
Kruskal J.B., 1978, Multidimensional scaling, V11
[6]   A NONLINEAR MAPPING FOR DATA STRUCTURE ANALYSIS [J].
SAMMON, JW .
IEEE TRANSACTIONS ON COMPUTERS, 1969, C 18 (05) :401-&
[7]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319
[8]  
Vapnik V, 1999, NATURE STAT LEARNING
[9]  
Wahba G., 1990, CBMS NSF REGIONAL C, DOI DOI 10.1137/1.9781611970128
[10]   Bayesian classification with Gaussian processes [J].
Williams, CKI ;
Barber, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (12) :1342-1351