Local Fractional Integral Holder-Type Inequalities and Some Related Results

被引:17
作者
Chen, Guangsheng [1 ]
Liang, Jiansuo [2 ]
Srivastava, Hari M. [3 ,4 ,5 ,6 ]
Lv, Chao [1 ]
机构
[1] Guangxi Sci & Technol Normal Univ, Coll Math & Comp Sci, Laibin 546199, Peoples R China
[2] Guangxi Modern Vocat Technol Coll, Dept Teacher Educ, Hechi 547000, Peoples R China
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
关键词
local fractional integral; Holder-type inequality; Minkowski-type inequality; Dresher-type inequality;
D O I
10.3390/fractalfract6040195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to establishing some functional generalizations of Holder and reverse Holder's inequalities with local fractional integral introduced by Yang. Then, based on the obtained results, we derive some related inequalities including local fractional integral Minkowski-type and Dresher-type inequalities, which are some extensions of several existing local fractional integral inequalities.
引用
收藏
页数:16
相关论文
共 34 条
[1]  
[Anonymous], 2012, ADV COMPUT SCI APPL
[2]  
[Anonymous], 2012, Advances in Mechanical Engineering
[3]  
[Anonymous], 2012, Journal of Expert Systems
[4]   A unified approach to fractal Hilbert-type inequalities [J].
Batbold, Tserendorj ;
Krnic, Mario ;
Vukovic, Predrag .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[5]  
Chen G.-S., 2014, Advanced Materials Research, V998, P976, DOI 10.4028/www.scientific.net/AMR.998-999.976
[6]  
Chen G.-S., 2014, ADV MATER RES-KR, V998, P980, DOI [10.4028/www.scientific.net/AMR.998-999.980, DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.998-999.980]
[7]   Some Further Generalizations of Holder's Inequality and Related Results on Fractal Space [J].
Chen, Guang-Sheng ;
Srivastava, H. M. ;
Wang, Pin ;
Wei, Wei .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[8]   Generalizations of Holder's and Some Related Integral Inequalities on Fractal Space [J].
Chen, Guang-Sheng .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[9]   On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets [J].
Chu, Yu-Ming ;
Rashid, Saima ;
Abdeljawad, Thabet ;
Khalid, Aasma ;
Kalsoom, Humaira .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[10]  
Hardy G., 1953, Inquealities, V37, P236