Minimal solution of general dual fuzzy linear systems

被引:46
作者
Abbasbandy, S. [1 ,2 ]
Otadi, M. [2 ,3 ]
Mosleh, M. [2 ,3 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Fac Sci, Qazvin 34194288, Iran
[2] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran 14778, Iran
[3] Islamic Azad Univ, Dept Math, Firuozkooh Branch, Firuozkooh, Iran
关键词
D O I
10.1016/j.chaos.2006.10.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered. (C) 2006 Published by Elsevier Ltd.
引用
收藏
页码:1113 / 1124
页数:12
相关论文
共 30 条
[1]   Conjugate gradient method for fuzzy symmetric positive definite system of linear equations [J].
Abbasbandy, S ;
Jafarian, A ;
Ezzati, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) :1184-1191
[2]   LU decomposition method for solving fuzzy system of linear equations [J].
Abbasbandy, S ;
Ezzati, R ;
Jafarian, A .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) :633-643
[3]   Tuning of reachable set in one dimensional fuzzy differential inclusions [J].
Abbasbandy, S ;
Nieto, JJ ;
Alavi, M .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1337-1341
[4]  
Abbasbandy S., 2005, MATH SCI J ISLAMIC A, V1, P55
[5]  
Abbasbandy S., 2005, IRAN J FUZZY SYST, V2, P37
[6]  
[Anonymous], 1990, J HARBIN I TECHNOL
[7]  
[Anonymous], 2005, CHAOS SOLITONS FRACT
[8]   Fuzzy general linear systems [J].
Asady, B ;
Abbasbandy, S ;
Alavi, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) :34-40
[9]  
Barnet S., 1990, MATRIX METHODS APPL
[10]   θ-compact fuzzy topological spaces [J].
Caldas, M ;
Jafari, S .
CHAOS SOLITONS & FRACTALS, 2005, 25 (01) :229-232