Deformation quantization of fermi fields

被引:3
作者
Galaviz, I. [2 ]
Garcia-Compean, H. [1 ,2 ]
Przanowski, M. [3 ]
Turrubiates, F. J. [4 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Monterrey Cerro Mitras 2565, Monterrey 64060, NL, Mexico
[2] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[3] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[4] IPN, Dept Fis, Escuela Super Fis & Matemat, Unidad Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
关键词
deformation quantization; field theory; fermionic fields; Dirac fields;
D O I
10.1016/j.aop.2007.05.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal star-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal star-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:827 / 844
页数:18
相关论文
共 57 条
  • [1] Quantum theory in curved spacetime using the Wigner function
    Antonsen, F
    [J]. PHYSICAL REVIEW D, 1997, 56 (02) : 920 - 935
  • [2] ANTONSEN F, GRQC9710021
  • [3] BAYEN F, 1978, ANN PHYS, V111
  • [4] On noncommutative orbifolds of K3 surfaces
    Belhaj, A
    Manjarín, JJ
    Resco, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) : 2507 - 2520
  • [5] Berezin F.A., 1987, MATH PHYS APPL MATH, V9
  • [6] PARTICLE SPIN DYNAMICS AS GRASSMANN VARIANT OF CLASSICAL MECHANICS
    BEREZIN, FA
    MARINOV, MS
    [J]. ANNALS OF PHYSICS, 1977, 104 (02) : 336 - 362
  • [7] BEREZIN FA, 1967, P MOSCOW MATH SOC, V17, P117
  • [8] Berezin FA., 1966, METHOD 2 QUANTIZATIO
  • [9] BEREZIN FA, 1971, THEOR MATH PHYS, V6, P94
  • [10] BONDIA JMG, 1988, J PHYS A, V21, pL879