The scattering operator on asymptotically hyperbolic manifolds

被引:0
作者
Barreto, Antonio Sa [1 ]
Wang, Yiran [2 ,3 ]
机构
[1] Purdue Univ, Dept Math, 150 North Univ St, W Lafayette, IN 47907 USA
[2] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[3] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Lo Ka Chung Bldg,Lee Shau Kee Campus, Hong Kong, Peoples R China
关键词
Asymptotically hyperbolic manifolds; radiation fields; scattering; scattering relation; wave equation; X-RAY TRANSFORM; INVERSE SCATTERING; LAPLACE OPERATOR; RESOLVENT; CONTINUATION; RIGIDITY; FIELDS;
D O I
10.4171/JST/248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a formula for the Schwartz kernel of the scattering operator in terms of the Schwartz kernel of the forward fundamental solution of the wave operator on asymptotically hyperbolic manifolds. This formula is then used to show that the scattering operator is a Fourier integral operator that quantizes the scattering relation.
引用
收藏
页码:269 / 313
页数:45
相关论文
共 60 条
[2]  
Agmon S., 1985, FRONTIERS MATH SCI 1
[3]   The semiclassical resolvent on conformally compact manifolds with variable curvature at infinity [J].
Barreto, Antonio Sa ;
Wang, Yiran .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (08) :1230-1302
[4]  
Barreto AS, 2005, DUKE MATH J, V129, P407
[5]  
Barreto AS, 2005, ANN I FOURIER, V55, P213
[6]   Scattering poles for asymptotically hyperbolic manifolds [J].
Borthwick, D ;
Perry, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (03) :1215-1231
[7]   Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy [J].
Chen, Xi ;
Hassell, Andrew .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (03) :515-578
[8]  
DUISTERMAAT J. J., 1996, PROGR MATH, V130
[9]   FOURIER INTEGRAL OPERATORS. II [J].
Duistermaat, J. J. ;
Hormander, L. .
ACTA MATHEMATICA, 1972, 128 (01) :183-269
[10]  
FADDEEV LD, 1967, T MOSKOVSK MATEM OBS, V17, P323