Invertibility of nonnegatively Hamiltonian operators in a Hilbert space

被引:68
作者
Kurina, GA [1 ]
机构
[1] Voronezh State Forest Engn Acad, Voronezh, Russia
基金
俄罗斯基础研究基金会;
关键词
Differential Equation; Hilbert Space; Partial Differential Equation; Ordinary Differential Equation; Functional Equation;
D O I
10.1023/A:1019259107760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:880 / 882
页数:3
相关论文
共 50 条
[21]   PERTURBATIONS OF DETERMINANTS OF NUCLEAR OPERATORS IN A HILBERT SPACE [J].
Gil', Michael .
QUAESTIONES MATHEMATICAE, 2021, 44 (06) :803-808
[22]   On interpolation approximation of differentiable operators in a Hilbert space [J].
Khlobystov V.V. ;
Popovicheva T.N. .
Ukrainian Mathematical Journal, 2006, 58 (4) :630-639
[23]   PERIODIC POINTS AND PERIODS FOR OPERATORS ON HILBERT SPACE [J].
Chiranjeevi, P. ;
Kannan, V. ;
Gopal, Sharan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) :4233-4237
[24]   Linear fractional relations for Hilbert space operators [J].
Khatskevich, V. A. ;
Ostrovskii, M. I. ;
Shulman, V. S. .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (08) :875-890
[25]   Riesz projections for a class of Hilbert space operators [J].
Duggal, BP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 :140-148
[26]   On the problem of Hermite interpolation of operators in a Hilbert space [J].
Kashpur E.F. ;
Makarov V.L. ;
Khlobystov V.V. .
Journal of Mathematical Sciences, 1997, 84 (4) :1233-1239
[27]   Inequalities for eigenvalues of compact operators in a Hilbert space [J].
Gil, Michael .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
[28]   SEMI-SMOOTH POINTS IN SPACE OF OPERATORS ON HILBERT SPACE [J].
Wojcik, Pawel .
OPERATORS AND MATRICES, 2020, 14 (04) :951-958
[29]   An extension of invertibility of Hammerstein-type operators [J].
Tunaru, R .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (02) :341-346
[30]   An extension of invertibility of Hammerstein-type operators [J].
Radu Tunaru .
Czechoslovak Mathematical Journal, 1999, 49 :341-346