Microorganisms harbor keys to a circular bioeconomy making them useful tools in fighting plastic pollution and rising CO2 levels

被引:26
作者
Antranikian, Garabed [1 ]
Streit, Wolfgang R. [2 ]
机构
[1] Hamburg Univ Technol, Ctr Biobased Solut CBBS, Hamburg, Germany
[2] Univ Hamburg, Dept Microbiol & Biotechnol, Hamburg, Germany
关键词
Biotechnology; Biocatalysis; Biotransformations; Industrial applications; Circular bioeconomy; Microbial plastic removal; CARBON-DIOXIDE; DIRECTED EVOLUTION; AUTOTROPHIC GROWTH; METHANE OXIDATION; ELECTRON-TRANSFER; MECHANISMS; PATHWAYS; SYSTEMS; GAS; METAGENOMICS;
D O I
10.1007/s00792-022-01261-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The major global and man-made challenges of our time are the fossil fuel-driven climate change a global plastic pollution and rapidly emerging plant, human and animal infections. To meet the necessary global changes, a dramatic transformation must take place in science and society. This transformation will involve very intense and forward oriented industrial and basic research strongly focusing on (bio)technology and industrial bioprocesses developments towards engineering a zero-carbon sustainable bioeconomy. Within this transition microorganisms-and especially extremophiles-will play a significant and global role as technology drivers. They harbor the keys and blueprints to a sustainable biotechnology in their genomes. Within this article, we outline urgent and important areas of microbial research and technology advancements and that will ultimately make major contributions during the transition from a linear towards a circular bioeconomy.
引用
收藏
页数:11
相关论文
共 109 条
[1]   Methanol Production via Bioelectrocatalytic Reduction of Carbon Dioxide: Role of Carbonic Anhydrase in Improving Electrode Performance [J].
Addo, Paul K. ;
Arechederra, Robert L. ;
Waheed, Abdul ;
Shoemaker, James D. ;
Sly, William S. ;
Minteer, Shelley D. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) :E9-E13
[2]   Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas [J].
Alvizo, Oscar ;
Nguyen, Luan J. ;
Savile, Christopher K. ;
Bresson, Jamie A. ;
Lakhapatri, Satish L. ;
Solis, Earl O. P. ;
Fox, Richard J. ;
Broering, James M. ;
Benoit, Michael R. ;
Zimmerman, Sabrina A. ;
Novick, Scott J. ;
Liang, Jack ;
Lalonde, James J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (46) :16436-16441
[3]  
Anderson R, 2020, CURR OPIN PLANT BIOL, V56, P197, DOI [10.1016/j.pbi.2019.12.006, 10.1016/j.pbi.2020.12.006]
[4]  
[Anonymous], 2019, RENEWABLES 2019 GLOB
[5]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[6]   Directed Evolution: Bringing New Chemistry to Life [J].
Arnold, Frances H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (16) :4143-4148
[7]   Non-Cholera Vibrios: The Microbial Barometer of Climate Change [J].
Baker-Austin, Craig ;
Trinanes, Joaquin ;
Gonzalez-Escalona, Narjol ;
Martinez-Urtaza, Jaime .
TRENDS IN MICROBIOLOGY, 2017, 25 (01) :76-84
[8]   Soluble Methane Monooxygenase [J].
Banerjee, Rahul ;
Jones, Jason C. ;
Lipscomb, John D. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 88, 2019, 88 :409-431
[9]   Design and analysis of synthetic carbon fixation pathways [J].
Bar-Even, Arren ;
Noor, Elad ;
Lewis, Nathan E. ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8889-8894
[10]  
Bell EL, 2021, NAT REV METHOD PRIME, V1, DOI 10.1038/s43586-021-00044-z