Weyl and Marchaud Derivatives: A Forgotten History

被引:57
作者
Ferrari, Fausto [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
关键词
fractional derivatives; Grunwald-Letnikov derivative; Weyl derivative; Marchaud derivative; fractional Laplace operator; extension operator; EXTENSION PROBLEM; HARNACKS INEQUALITY; LAPLACIANS; SEMIGROUPS; REGULARITY; OPERATORS; OBSTACLE;
D O I
10.3390/math6010006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we recall the contribution given by Hermann Weyl and Andre Marchaud to the notion of fractional derivative. In addition, we discuss some relationships between the fractional Laplace operator and Marchaud derivative in the perspective to generalize these objects to different fields of the mathematics.
引用
收藏
页数:25
相关论文
共 60 条
  • [1] Non-local fractional derivatives. Discrete and continuous
    Abadias, Luciano
    De Leon-Contreras, Marta
    Torrea, Jose L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 734 - 755
  • [2] Abel N., 1823, Mag. Naturvidenskaberne, V1, P11
  • [3] Porous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
    Allen, Mark
    Caffarelli, Luis
    Vasseur, Alexis
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 45 - 82
  • [4] Gamma-convergence of nonlocal perimeter functionals
    Ambrosio, Luigi
    De Philippis, Guido
    Martinazzi, Luca
    [J]. MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) : 377 - 403
  • [5] [Anonymous], 2002, Trigonometric Series
  • [6] [Anonymous], 2002, ANAL METHODS SPECIAL
  • [7] [Anonymous], 1935, TRIGONOMETRICAL SERI
  • [8] [Anonymous], 1970, PRINCETON MATH SERIE
  • [9] [Anonymous], 1969, TEOR VEROJATNOST PRI
  • [10] [Anonymous], 1975, FRACTIONAL CALCULUS