Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels

被引:145
|
作者
Zhang, Xi [1 ,2 ,3 ]
Yan, Xingru [1 ]
He, Qingliang [1 ,6 ]
Wei, Huige [1 ,2 ,3 ]
Long, Jun [3 ]
Guo, Jiang [1 ]
Gu, Hongbo [4 ]
Yu, Jingfang [5 ]
Liu, Jingjing [5 ]
Ding, Daowei [1 ,6 ]
Sun, Luyi [5 ]
Wei, Suying [2 ,3 ]
Guo, Zhanhu [1 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, ICL, Knoxville, TN 37996 USA
[2] Lamar Univ, Dept Chem & Biochem, Beaumont, TX 77710 USA
[3] Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA
[4] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[5] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[6] Engn Multifunct Composites LLC, Beaumont, TX 77713 USA
基金
美国国家科学基金会;
关键词
polypropylene nanocomposites; percolation value; crystal phases; viscosity; band gap; negative permittivity; NONISOTHERMAL CRYSTALLIZATION; ISOTACTIC POLYPROPYLENE; POLYMER NANOCOMPOSITES; MAGNETIC POLYPROPYLENE; RHEOLOGICAL PROPERTIES; GAMMA-PHASE; COMPOSITES; NUCLEATION; MORPHOLOGY; BEHAVIOR;
D O I
10.1021/am5082183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (sigma) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher sigma. The fraction of gamma-phase PP increased with increasing the pressing ternperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 degrees C and 1.70 eV prepared at 160 and 180 degrees C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.
引用
收藏
页码:6125 / 6138
页数:14
相关论文
共 50 条
  • [31] Negative permittivity behavior of aligned carbon nanotube films
    Zhang, Wei
    Xiong, Huagang
    Wang, Shaokai
    Li, Min
    Gu, Yizhuo
    APPLIED PHYSICS LETTERS, 2015, 106 (18)
  • [32] Soundproofing properties of polypropylene/clay/carbon nanotube nanocomposites
    Kim, Myung-Sub
    Yan, Jun
    Kang, Kyung-Min
    Joo, Kyung-Hoon
    Pandey, Jitendra K.
    Kang, Yeon-June
    Ahn, Sung-Hoon
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (01) : 504 - 509
  • [33] Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites
    Kashiwagi, T
    Grulke, E
    Hilding, J
    Groth, K
    Harris, R
    Butler, K
    Shields, J
    Kharchenko, S
    Douglas, J
    POLYMER, 2004, 45 (12) : 4227 - 4239
  • [34] Structural conductive carbon nanotube nanocomposites for stretchable electronics
    Ahn, Jaekyeong
    Noh, Seunghwan
    Kim, Danbi
    Kim, Bo-Seok
    Kim, Sejung
    Song, Youngjun
    MATERIALS RESEARCH EXPRESS, 2023, 10 (03)
  • [35] Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites
    Wei, Huige
    Ding, Daowei
    Wei, Suying
    Guo, Zhanhu
    Wei, S. (suying.wei@lamar.edu), 1600, Royal Society of Chemistry (01) : 10805 - 10813
  • [36] Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites
    Wei, Huige
    Ding, Daowei
    Wei, Suying
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) : 10805 - 10813
  • [37] Highly Conductive Carbon Nanotube/Polymer Nanocomposites Achievable?
    Sun, Xinxin
    Song, Mo
    MACROMOLECULAR THEORY AND SIMULATIONS, 2009, 18 (03) : 155 - 161
  • [38] Stiff and electrically conductive composites of carbon nanotube aerogels and polymers
    Worsley, Marcus A.
    Kucheyev, Sergei O.
    Kuntz, Joshua D.
    Hamza, Alex V.
    Satcher, Joe H., Jr.
    Baumann, Theodore F.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (21) : 3370 - 3372
  • [39] Additive Manufacturing of Electrically Conductive Nanocomposites Filled with Carbon Nanotubes
    Iervolino, Filippo
    Bonessa, Aurora
    Foti, Gaia
    Levi, Marinella
    Suriano, Raffaella
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (12)
  • [40] Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold
    Ameli, A.
    Nofar, M.
    Park, C. B.
    Poetschke, P.
    Rizvi, G.
    CARBON, 2014, 71 : 206 - 217