Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels

被引:145
|
作者
Zhang, Xi [1 ,2 ,3 ]
Yan, Xingru [1 ]
He, Qingliang [1 ,6 ]
Wei, Huige [1 ,2 ,3 ]
Long, Jun [3 ]
Guo, Jiang [1 ]
Gu, Hongbo [4 ]
Yu, Jingfang [5 ]
Liu, Jingjing [5 ]
Ding, Daowei [1 ,6 ]
Sun, Luyi [5 ]
Wei, Suying [2 ,3 ]
Guo, Zhanhu [1 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, ICL, Knoxville, TN 37996 USA
[2] Lamar Univ, Dept Chem & Biochem, Beaumont, TX 77710 USA
[3] Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA
[4] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[5] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[6] Engn Multifunct Composites LLC, Beaumont, TX 77713 USA
基金
美国国家科学基金会;
关键词
polypropylene nanocomposites; percolation value; crystal phases; viscosity; band gap; negative permittivity; NONISOTHERMAL CRYSTALLIZATION; ISOTACTIC POLYPROPYLENE; POLYMER NANOCOMPOSITES; MAGNETIC POLYPROPYLENE; RHEOLOGICAL PROPERTIES; GAMMA-PHASE; COMPOSITES; NUCLEATION; MORPHOLOGY; BEHAVIOR;
D O I
10.1021/am5082183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (sigma) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher sigma. The fraction of gamma-phase PP increased with increasing the pressing ternperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 degrees C and 1.70 eV prepared at 160 and 180 degrees C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.
引用
收藏
页码:6125 / 6138
页数:14
相关论文
共 50 条
  • [21] Electrically Conductive Carbon-Nanotube Framework Materials
    Kuksin, A. V.
    Glukhova, O. E.
    Gerasimenko, A. Yu.
    SEMICONDUCTORS, 2022, 56 (13) : 422 - 426
  • [22] Carbon nanotube modified electrically conductive cellulose film
    Jiang, Wei
    Hao, Ayou
    Li, Wei
    Chen, Jonathan
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 8, 2012, : 617 - 619
  • [23] Mechanically robust and electrically conductive carbon nanotube foams
    Worsley, Marcus A.
    Kucheyev, Sergei O.
    Satcher, Joe H., Jr.
    Hamza, Alex V.
    Baumann, Theodore F.
    APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [24] Electrically Conductive Carbon-Nanotube Framework Materials
    A. V. Kuksin
    O. E. Glukhova
    A. Yu. Gerasimenko
    Semiconductors, 2022, 56 : 422 - 426
  • [25] Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold
    Tjong, S. C.
    Liang, G. D.
    Bao, S. P.
    SCRIPTA MATERIALIA, 2007, 57 (06) : 461 - 464
  • [26] Polypropylene nanocomposites with high-loading conductive carbon nano-reinforcements for multifunctional applications
    Pathak, Abhishek K.
    Zhou, Yu
    Lecointre, Lea
    Yokozeki, Tomohiro
    APPLIED NANOSCIENCE, 2021, 11 (02) : 493 - 503
  • [27] Polypropylene nanocomposites with high-loading conductive carbon nano-reinforcements for multifunctional applications
    Abhishek K. Pathak
    Yu Zhou
    Lea Lecointre
    Tomohiro Yokozeki
    Applied Nanoscience, 2021, 11 : 493 - 503
  • [28] Electrically Conductive Epoxy Nanocomposites with Expanded Graphite/Carbon Nanotube Hybrid Fillers Prepared by Direct Hybridization
    Yu, Lan
    Kang, Hyokyung
    Lim, Yun-Soo
    Lee, Churl Seung
    Shin, Kwonwoo
    Park, Ji Sun
    Han, Jong Hun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (12) : 9139 - 9142
  • [29] Enhanced Electrically Conductive Polypropylene/Nano Carbon Black Composite
    Mao, Guang Xiu
    Zhu, An Feng
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2012, 51 (10) : 1073 - 1076
  • [30] Magnetoresistive Conductive Polyaniline-Barium Titanate Nanocomposites with Negative Permittivity
    Zhang, Xi
    Wei, Suying
    Haldolaarachchige, Neel
    Colorado, Henry A.
    Luo, Zhiping
    Young, David P.
    Guo, Zhanhu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29): : 15731 - 15740