Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels

被引:145
|
作者
Zhang, Xi [1 ,2 ,3 ]
Yan, Xingru [1 ]
He, Qingliang [1 ,6 ]
Wei, Huige [1 ,2 ,3 ]
Long, Jun [3 ]
Guo, Jiang [1 ]
Gu, Hongbo [4 ]
Yu, Jingfang [5 ]
Liu, Jingjing [5 ]
Ding, Daowei [1 ,6 ]
Sun, Luyi [5 ]
Wei, Suying [2 ,3 ]
Guo, Zhanhu [1 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, ICL, Knoxville, TN 37996 USA
[2] Lamar Univ, Dept Chem & Biochem, Beaumont, TX 77710 USA
[3] Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA
[4] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[5] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[6] Engn Multifunct Composites LLC, Beaumont, TX 77713 USA
基金
美国国家科学基金会;
关键词
polypropylene nanocomposites; percolation value; crystal phases; viscosity; band gap; negative permittivity; NONISOTHERMAL CRYSTALLIZATION; ISOTACTIC POLYPROPYLENE; POLYMER NANOCOMPOSITES; MAGNETIC POLYPROPYLENE; RHEOLOGICAL PROPERTIES; GAMMA-PHASE; COMPOSITES; NUCLEATION; MORPHOLOGY; BEHAVIOR;
D O I
10.1021/am5082183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (sigma) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher sigma. The fraction of gamma-phase PP increased with increasing the pressing ternperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 degrees C and 1.70 eV prepared at 160 and 180 degrees C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.
引用
收藏
页码:6125 / 6138
页数:14
相关论文
共 50 条
  • [1] Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding
    Ma, Yuling
    Wu, Daming
    Liu, Ying
    Li, Xiaofeng
    Qiao, Hui
    Yu, Zhong-Zhen
    COMPOSITES PART B-ENGINEERING, 2014, 56 : 384 - 391
  • [2] Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties
    Al-Saleh, Mohammed H.
    MATERIALS & DESIGN, 2015, 85 : 76 - 81
  • [3] Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks
    Fang, Weiqing
    Jang, Hwi W.
    Leung, Siu N.
    COMPOSITES PART B-ENGINEERING, 2015, 83 : 184 - 193
  • [4] Novel electrically conductive polypropylene/graphite nanocomposites
    Chen, XM
    Shen, JW
    Huang, WY
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2002, 21 (03) : 213 - 214
  • [5] On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites
    Grossiord, Nadia
    Kivit, Patrick J. J.
    Loos, Joachim
    Meuldijk, Jan
    Kyrylyuk, Andriy V.
    van der Schoot, Paul
    Koning, Cor E.
    POLYMER, 2008, 49 (12) : 2866 - 2872
  • [6] Preparation and properties of polypropylene/graphite electrically conductive nanocomposites
    Quan, CZ
    Shen, JW
    Chen, XM
    ACTA POLYMERICA SINICA, 2003, (06) : 831 - 836
  • [7] Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity
    Gu, Hongbo
    Guo, Jiang
    He, Qingliang
    Jiang, Yuan
    Huang, Yudong
    Haldolaarachige, Neel
    Luo, Zhiping
    Young, David P.
    Wei, Suying
    Guo, Zhanhu
    NANOSCALE, 2014, 6 (01) : 181 - 189
  • [8] Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites
    Koerner, H
    Liu, WD
    Alexander, M
    Mirau, P
    Dowty, H
    Vaia, RA
    POLYMER, 2005, 46 (12) : 4405 - 4420
  • [9] Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature
    Bao, S. P.
    Tjong, S. C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 485 (1-2): : 508 - 516
  • [10] Conductive polymer blends with low carbon black loading: Polypropylene/polycarbonate
    Tchoudakov, R
    Breuer, O
    Narkis, M
    Siegmann, A
    POLYMER NETWORKS & BLENDS, 1996, 6 (01): : 1 - 8