Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels

被引:145
|
作者
Zhang, Xi [1 ,2 ,3 ]
Yan, Xingru [1 ]
He, Qingliang [1 ,6 ]
Wei, Huige [1 ,2 ,3 ]
Long, Jun [3 ]
Guo, Jiang [1 ]
Gu, Hongbo [4 ]
Yu, Jingfang [5 ]
Liu, Jingjing [5 ]
Ding, Daowei [1 ,6 ]
Sun, Luyi [5 ]
Wei, Suying [2 ,3 ]
Guo, Zhanhu [1 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, ICL, Knoxville, TN 37996 USA
[2] Lamar Univ, Dept Chem & Biochem, Beaumont, TX 77710 USA
[3] Lamar Univ, Dan F Smith Dept Chem Engn, Beaumont, TX 77710 USA
[4] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[5] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[6] Engn Multifunct Composites LLC, Beaumont, TX 77713 USA
基金
美国国家科学基金会;
关键词
polypropylene nanocomposites; percolation value; crystal phases; viscosity; band gap; negative permittivity; NONISOTHERMAL CRYSTALLIZATION; ISOTACTIC POLYPROPYLENE; POLYMER NANOCOMPOSITES; MAGNETIC POLYPROPYLENE; RHEOLOGICAL PROPERTIES; GAMMA-PHASE; COMPOSITES; NUCLEATION; MORPHOLOGY; BEHAVIOR;
D O I
10.1021/am5082183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (sigma) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher sigma. The fraction of gamma-phase PP increased with increasing the pressing ternperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 degrees C and 1.70 eV prepared at 160 and 180 degrees C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.
引用
收藏
页码:6125 / 6138
页数:14
相关论文
共 50 条
  • [1] Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding
    Ma, Yuling
    Wu, Daming
    Liu, Ying
    Li, Xiaofeng
    Qiao, Hui
    Yu, Zhong-Zhen
    COMPOSITES PART B-ENGINEERING, 2014, 56 : 384 - 391
  • [2] Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks
    Fang, Weiqing
    Jang, Hwi W.
    Leung, Siu N.
    COMPOSITES PART B-ENGINEERING, 2015, 83 : 184 - 193
  • [3] Electrically Conductive Multi-walled Carbon Nanotube-Reinforced Amorphous Polyamide Nanocomposites
    Aranburu, N.
    Eguiazabal, J. I.
    POLYMER COMPOSITES, 2014, 35 (03) : 587 - 595
  • [4] Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene
    Lan, Yan
    Liu, Hu
    Cao, Xiaohan
    Zhao, Shuaiguo
    Dai, Kun
    Yan, Xingru
    Zheng, Guoqiang
    Liu, Chuntai
    Shen, Changyu
    Guo, Zhanhu
    POLYMER, 2016, 97 : 11 - 19
  • [5] Polypropylene nanocomposites with high-loading conductive carbon nano-reinforcements for multifunctional applications
    Pathak, Abhishek K.
    Zhou, Yu
    Lecointre, Lea
    Yokozeki, Tomohiro
    APPLIED NANOSCIENCE, 2021, 11 (02) : 493 - 503
  • [6] Effect of interfacial chemistry on crystallization of polypropylene/multiwall carbon nanotube nanocomposites
    Wang, Po-Hsiang
    Gulgunje, Prabhakar
    Ghoshal, Sushanta
    Odeh, Ihab N.
    Verghese, Nikhil
    Kumar, Satish
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 (08) : 1570 - 1584
  • [7] Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications
    Liu, Hu
    Li, Yilong
    Dai, Kun
    Zheng, Guoqiang
    Liu, Chuntai
    Shen, Changyu
    Yan, Xingru
    Guo, Jiang
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (01) : 157 - 166
  • [8] Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity
    Gu, Hongbo
    Guo, Jiang
    He, Qingliang
    Jiang, Yuan
    Huang, Yudong
    Haldolaarachige, Neel
    Luo, Zhiping
    Young, David P.
    Wei, Suying
    Guo, Zhanhu
    NANOSCALE, 2014, 6 (01) : 181 - 189
  • [9] Carbon nanotube/polypropylene/polycarbonate conductive nanocomposite films: Preparation and characterization
    Li, Ting-Ting
    Zhang, Xiaoyang
    Wang, Yanting
    Sun, Fei
    Xu, Jiawen
    Lou, Ching-Wen
    Lin, Jia-Horng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (43)
  • [10] Magnetoresistive Conductive Polyaniline-Barium Titanate Nanocomposites with Negative Permittivity
    Zhang, Xi
    Wei, Suying
    Haldolaarachchige, Neel
    Colorado, Henry A.
    Luo, Zhiping
    Young, David P.
    Guo, Zhanhu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) : 15731 - 15740