Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites

被引:83
作者
Xia, Hongyan [1 ]
Zhang, Xia [1 ]
Shi, Zhongqi [1 ]
Zhao, Changjian [1 ]
Li, Yongfeng [1 ]
Wang, Jiping [1 ]
Qiao, Guanjun [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2015年 / 639卷
基金
中国国家自然科学基金;
关键词
Reduced graphene oxide; Aluminum nitride; Mechanical properties; Thermal properties; FRACTURE-TOUGHNESS; MICROSTRUCTURE; CONDUCTIVITY; CHALLENGES;
D O I
10.1016/j.msea.2015.04.091
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High density reduced graphene oxide (rGO) reinforced aluminum nitride (AIN) composites were successfully fabricated by the one-step spark plasma sintering (SPS) method. Raman spectra showed that the raw material of GO was thermal reduced to rGO during the SPS process, and the reduction of GO can be strongly affected by the carbonaceous atmosphere. With the rGO content increasing (0-2 wt %), the dispersion of rGO and relative density of the composites decreased, decreasing the elastic modulus and hardness accordingly. However the flexural strength had a slight increase when rGO content was <= 1 wt%, and the fracture toughness increased from 3.5 to 5.2 MPa m(1/2) with the rGO due to the crack bridging and pulling out of rGO. The thermal conductivity of the composites was low and sharply decreased from 92.5 to 37.4W m(-1) K-1 with the addition of rGO, which are attributed to the low crystalline quality and high vacancy defects in rGO and the increase of interfacial thermal resistance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 38 条
[1]   Report on Carbon Nano Material Workshop: Challenges and Opportunities [J].
Acharya, S. ;
Alvarado, J. ;
Banerjee, D. ;
Billups, W. E. ;
Chen, G. ;
Cola, B. A. ;
Cross, W. ;
Duke, E. ;
Graham, S., Jr. ;
He, H. ;
Hong, H. ;
Jin, S. ;
Karna, S. ;
Li, C. ;
Li, C. H. ;
Li, J. ;
Peterson, G. P. ;
Puszynski, J. A. ;
Routbort, J. ;
Shan, J. ;
Shin, D. ;
Smirnova, A. ;
Smith, P. ;
Wang, X. ;
Waynick, A. ;
White, R. ;
Yan, X. ;
Yu, W. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2013, 17 (01) :10-24
[2]   Graphene-inorganic nanocomposites [J].
Bai, Song ;
Shen, Xiaoping .
RSC ADVANCES, 2012, 2 (01) :64-98
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Effective thermal conductivity of graphene-based composites [J].
Chu, Ke ;
Jia, Cheng-chang ;
Li, Wen-sheng .
APPLIED PHYSICS LETTERS, 2012, 101 (12)
[5]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[6]   Microstructure and fracture toughness of Si3N4 + graphene platelet composites [J].
Dusza, Jan ;
Morgiel, Jerzy ;
Duszova, Annamaria ;
Kvetkova, Lenka ;
Nosko, Martin ;
Kun, Peter ;
Balazsi, Csaba .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (12) :3389-3397
[7]   Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets [J].
Dutkiewicz, Jan ;
Ozga, Piotr ;
Maziarz, Wojciech ;
Pstrus, Janusz ;
Kania, Bogusz ;
Bobrowski, Piotr ;
Stolarska, Justyna .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 628 :124-134
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Study on microstructure and thermal conductivity of Spark Plasma Sintering AlN ceramics [J].
He, Xiulan ;
Ye, Feng ;
Zhang, Haijiao ;
Zhou, Zhiqiang .
MATERIALS & DESIGN, 2010, 31 (09) :4110-4115
[10]   Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process [J].
Hwang, Jaewon ;
Yoon, Taeshik ;
Jin, Sung Hwan ;
Lee, Jinsup ;
Kim, Taek-Soo ;
Hong, Soon Hyung ;
Jeon, Seokwoo .
ADVANCED MATERIALS, 2013, 25 (46) :6724-6729