THE FIRST TWO HYPERTREES WITH LARGER SPECTRAL RADIUS AMONG ALL UNIFORM HYPERTREES WITH GIVEN SIZE AND STRONG STABILITY NUMBER

被引:0
作者
Su, Li [1 ]
Li, Honghai [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2021年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
hypertree; adjacency tensor; spectral radius; matching polynomial; SUPERTREES; EIGENVALUES;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, using matching polynomial method, we determine the first two hypertrees which uniquely attain the largest and second largest spectral radius among all hypertrees with given size and strong stability number.
引用
收藏
页码:645 / 662
页数:18
相关论文
共 19 条
[1]  
Bretto A, 2013, HYPERGRAPH THEORY IN
[2]  
Clark GJ, 2018, ELECTRON J COMB, V25
[3]   Spectra of uniform hypergraphs [J].
Cooper, Joshua ;
Dutle, Aaron .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3268-3292
[4]   Perron-Frobenius theorem for nonnegative multilinear forms and extensions [J].
Friedland, S. ;
Gaubert, S. ;
Han, L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) :738-749
[5]   On the spectral radius of uniform hypertrees [J].
Guo, Haiyan ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 558 :236-249
[6]   Bounds on the largest eigenvalues of trees with a given size of matching [J].
Hou, YP ;
Li, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 342 (1-3) :203-217
[7]  
Li HH, 2016, J COMB OPTIM, V32, P741, DOI 10.1007/s10878-015-9896-4
[8]  
Lim LH, 2005, IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, P129
[9]   Connected hypergraphs with small spectral radius [J].
Lu, Linyuan ;
Man, Shoudong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 509 :206-227
[10]  
QI L, 2017, TENSOR ANALYSIS SPEC