A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming

被引:12
作者
Yang, Ximei [1 ,2 ]
Liu, Hongwei [1 ]
Zhang, Yinkui [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Jordan algebra; Symmetric cone programming; Infeasible-interior-point method; Polynomial complexity; POLYNOMIAL CONVERGENCE; ALGORITHMS;
D O I
10.1007/s10957-014-0670-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we give a new strategy in the complexity analysis of an infeasible-interior-point method for symmetric cone programming. Using the strategy, we improve the theoretical complexity bound of an infeasible-interior-point method. Convergence is shown for a commutative class of search directions, which includes the Nesterov-Todd direction and the and directions.
引用
收藏
页码:572 / 587
页数:16
相关论文
共 27 条
[1]  
Faraut J., 1994, ANAL SYMMETRIC CONE
[2]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[3]   Full Nesterov-Todd step infeasible interior-point method for symmetric optimization [J].
Gu, G. ;
Zangiabadi, M. ;
Roos, C. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 214 (03) :473-484
[4]   Barrier functions in interior point methods [J].
Guler, O .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (04) :860-885
[5]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[6]  
Liu C, 2012, THESIS XIDIAN U
[7]   Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones [J].
Liu, Changhe ;
Liu, Hongwei ;
Liu, Xinze .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (03) :949-965
[8]   A New Wide Neighborhood Primal-Dual Infeasible-Interior-Point Method for Symmetric Cone Programming [J].
Liu, Hongwei ;
Yang, Ximei ;
Liu, Changhe .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (03) :796-815
[9]   Path-following interior point algorithms for the Cartesian P *(κ)-LCP over symmetric cones [J].
Luo ZiYan ;
Xiu NaiHua .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08) :1769-1784
[10]   FEASIBILITY ISSUES IN A PRIMAL DUAL INTERIOR-POINT METHOD FOR LINEAR-PROGRAMMING [J].
LUSTIG, IJ .
MATHEMATICAL PROGRAMMING, 1990, 49 (02) :145-162