Spectral stability of Dirichlet second order uniformly elliptic operators

被引:34
作者
Burenkov, Victor I. [1 ]
Lamberti, Pier Domenico [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
基金
俄罗斯基础研究基金会;
关键词
elliptic equations; Dirichlet boundary conditions; stability of eigenvalues; sharp estimates; domain perturbation;
D O I
10.1016/j.jde.2007.12.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove sharp stability results for the dependence of the eigenvalues of second order uniformly elliptic linear operators with homogeneous Dirichlet boundary conditions upon domain perturbation. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1712 / 1740
页数:29
相关论文
共 26 条
[1]  
[Anonymous], RUSSIAN ACAD SCI DOK
[2]  
[Anonymous], SOVIET MATH DOKL
[3]  
[Anonymous], SPECTRAL THEORY DIFF
[4]  
Burenkov VI, 2005, DOKL MATH, V72, P507
[5]   Spectral stability of the Neumann Laplacian [J].
Burenkov, VI ;
Davies, EB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :485-508
[6]  
BURENKOV VI, 2006, INT C DIFF EQ JUL 20, V15, P76
[7]  
BURENKOV VI, 2005, P C DIFF DIFF EQ APP, P237
[8]   Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators [J].
Burenkov, Victor I. ;
Lamberti, Pier Domenico .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (02) :345-379
[9]   EIGENVALUE STABILITY BOUNDS VIA WEIGHTED SOBOLEV SPACES [J].
DAVIES, EB .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (03) :357-371
[10]   Sharp boundary estimates for elliptic operators [J].
Davies, EB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 129 :165-178