共 42 条
Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony
被引:130
作者:
Trimble, Mark A.
[2
,3
]
Velazquez, Eric J.
[2
,3
]
Adams, George L.
[2
,3
]
Honeycutt, Emily F.
[3
]
Pagnanelli, Robert A.
[1
]
Barnhart, Huiman X.
[3
]
Chen, Ji
[4
]
Iskandrian, Ami E.
[5
,6
]
Garcia, Ernest V.
[4
]
Borges-Neto, Salvador
[1
,2
,3
]
机构:
[1] Duke Univ, Med Ctr, Dept Radiol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Div Cardiol, Dept Med, Durham, NC 27710 USA
[3] Duke Clin Res Inst, Durham, NC USA
[4] Emory Univ, Sch Med, Dept Radiol, Atlanta, GA 30322 USA
[5] Univ Alabama, Dept Med, Div Cardiol, Tuscaloosa, AL 35487 USA
[6] Univ Alabama, Dept Radiol, Tuscaloosa, AL 35487 USA
关键词:
dyssynchrony;
heart failure;
single-photon emission computed tomography;
D O I:
10.1097/MNM.0b013e3282f81380
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Background A novel method to quantify dyssynchrony has been developed using phase analysis of gated single-photon emission computed tomography perfusion imaging. We report on the effect of variability in image reconstruction on the phase analysis results (repeatability) and on the interobserver and intraobserver reproducibility of the technique. Methods Phase standard deviation (SD) and bandwidth are phase indices that quantify dyssynchrony. To evaluate repeatability, raw data sets were processed twice in 50 patients with left ventricular dysfunction and 50 normal controls. To determine the optimal processing method, two replicated phase analysis results were obtained using automated and manual base parameter placement. Reproducibility of the phase analysis was determined using the data from 20 patients. Results In normal controls, manual base parameter placement improves repeatability of the phase analysis as measured by the mean absolute difference between two reads for phase SD (12.0 degrees vs. 1.2 degrees, P< 0.0001) and bandwidth (33.7 degrees vs. 3.6 degrees, P<0.0001). Repeatability is better for normal controls than for patients with left ventricular dysfunction for phase SD (1.2 degrees vs. 6.0 degrees, P<0.0001) and bandwidth (3.6 degrees vs. 26.5 degrees, P<0.0001). Reproducibility of the phase analysis is high as measured by the intraclass correlation coefficients for phase SD and bandwidth of 0.99 and 0.99 for the interobserver comparisons and 1.00 and 1.00 for the intraobserver comparisons. Conclusion A novel method to quantify dyssynchrony has been developed using gated single-photon emission computed tomography perfusion imaging. Manual base parameter placement reduces the effect that variability in image reconstruction has on phase analysis. A high degree of reproducibility of phase analysis is observed. Nucl Med Commun 29:374-381 (c) 2008 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
引用
收藏
页码:374 / 381
页数:8
相关论文