Neuro-adaptive augmented distributed nonlinear dynamic inversion for consensus of nonlinear agents with unknown external disturbance

被引:8
作者
Mondal, Sabyasachi [1 ]
Tsourdos, Antonios [1 ]
机构
[1] Cranfield Univ, Aerosp Engn, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
MULTIAGENT SYSTEMS; TRACKING CONTROL; DESIGN;
D O I
10.1038/s41598-022-05663-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a novel neuro-adaptive augmented distributed nonlinear dynamic inversion (N-DNDI) controller for consensus of nonlinear multi-agent systems in the presence of unknown external disturbance. N-DNDI is a blending of neural network and distributed nonlinear dynamic inversion (DNDI), a new consensus control technique that inherits the features of Nonlinear Dynamic Inversion (NDI) and is capable of handling the unknown external disturbance. The implementation of NDI based consensus control along with neural networks is unique in the context of multi-agent consensus. The mathematical details provided in this paper show the solid theoretical base, and simulation results prove the effectiveness of the proposed scheme.
引用
收藏
页数:15
相关论文
共 25 条
[1]  
Ambati P.R., 2014, 19 IFAC WORLD, V47, P12202, DOI [10.3182/20140824-6-ZA-1003.01315, DOI 10.3182/20140824-6-ZA-1003.01315]
[2]   Nonlinear Dynamic Inversion of a Flexible Aircraft [J].
Caverly, Ryan James ;
Girard, Anouck R. ;
Kolmanovsky, Ilya V. ;
Forbes, James Richard .
IFAC PAPERSONLINE, 2016, 49 (17) :338-342
[3]   DYNAMIC INVERSION - AN EVOLVING METHODOLOGY FOR FLIGHT CONTROL DESIGN [J].
ENNS, D ;
BUGAJSKI, D ;
HENDRICK, R ;
STEIN, G .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (01) :71-91
[4]   Adaptive neural control of uncertain MIMO nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03) :674-692
[5]   Non-Linear Dynamic Inversion Control Design for Rotorcraft [J].
Horn, Joseph F. .
AEROSPACE, 2019, 6 (03)
[6]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[7]   Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks [J].
Hou, Zeng-Guang ;
Cheng, Long ;
Tan, Min .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (03) :636-647
[8]   Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults [J].
Li, Yu ;
Wang, Chaoli ;
Cai, Xuan ;
Li, Lin ;
Wang, Gang .
NEUROCOMPUTING, 2019, 349 :64-76
[9]  
Liang H., 2020, IEEE Trans. Fuzzy Syst
[10]   Neural-Network-Based Distributed Adaptive Robust Control for a Class of Nonlinear Multiagent Systems With Time Delays and External Noises [J].
Ma, Hongwen ;
Wang, Zhuo ;
Wang, Ding ;
Liu, Derong ;
Yan, Pengfei ;
Wei, Qinglai .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (06) :750-758