LDG method for reaction-diffusion dynamical systems with time delay

被引:56
作者
Li, Dongfang [1 ]
Zhang, Chengjian [1 ]
Qin, Hongyu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Local discontinuous Galerkin method; Reaction-diffusion dynamical systems with time delay; Stability; Convergence; Biologic models; DISCONTINUOUS GALERKIN METHOD; RUNGE-KUTTA METHODS; FINITE-DIFFERENCE METHOD; ONE-LEG METHODS; D-CONVERGENCE; EQUATIONS; STABILITY; HEMATOPOIESIS; CONVECTION; MODEL;
D O I
10.1016/j.amc.2011.03.153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a local discontinuous Galerkin method to solve nonlinear reaction-diffusion dynamical systems with time delay. Stability and convergence of the schemes are obtained. Finally, numerical examples on two biologic models are shown to demonstrate the accuracy and stability of the method. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9173 / 9181
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 1996, DIFFERENTIAL EQUATIO
[2]   A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations [J].
Ansari, A. R. ;
Bakr, S. A. ;
Shishkin, G. I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :552-566
[3]  
Baker C.T.H., 1996, VOLT CENT M UTA ARL
[4]   A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation [J].
Bashier, E. B. M. ;
Patidar, K. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4728-4739
[5]  
Castillo P, 2000, LECT NOTES COMP SCI, V11, P285
[6]   Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations [J].
Cheng, Yingda ;
Shu, Chi-Wang .
COMPUTERS & STRUCTURES, 2009, 87 (11-12) :630-641
[7]  
Ciarlet P, 1975, FINITE ELEMENT METHO
[8]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[9]   Local Discontinuous Galerkin Finite Element Method and Error Estimates for One Class of Sobolev Equation [J].
Gao, Fuzheng ;
Qiu, Jianxian ;
Zhang, Qiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (03) :436-460
[10]  
Gopalsamy K., 1990, J DYN DIFFER EQU, V2, P117, DOI DOI 10.1007/BF01057415