Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche

被引:30
作者
Cai, Weiwei [1 ]
Liu, Wenzong [2 ]
Zhang, Zhaojing [3 ]
Feng, Kai [2 ]
Ren, Ge [2 ]
Pu, Chuanliang [2 ]
Li, Jiaqi [2 ]
Deng, Ye [2 ]
Wang, Aijie [2 ,4 ]
机构
[1] Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Environm Biotechnol, Beijing 100085, Peoples R China
[3] Dalian Univ Technol, Sch Environm Sci & Technol, Key Lab Ind Ecol & Environm Engn, State Key Lab Fine Chem,Minist Educ, Dalian 116024, Peoples R China
[4] HIT, SKLUWRE, Harbin 150090, Heilongjiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Methanogenic community; Basophilic methanogens; mcrA; WASTE ACTIVATED-SLUDGE; 16S RIBOSOMAL-RNA; ANAEROBIC-DIGESTION; FERMENTATION LIQUID; METHANE PRODUCTION; SP-NOV; ELECTROSYNTHESIS; METHANOSARCINA; HYDROGENASE; ENHANCEMENT;
D O I
10.1016/j.scitotenv.2019.01.131
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The underlying dynamics of microbial (bacteria and archaea) communities ecologically responding to an applied potential are critical to achieving the goal of enhancing bioenergy recovery but are not sufficiently understood. We built a MEC-AD mode that increased methane production rate by several times (max. 3.8 times) during the startup period compared to control AD, changed the absence or presence of external voltage to provide the pre-, dur-, and post-samples for microbial analysis. From a time and spatially dependent community analysis of electrode-respiring bacteria and methanogens, the corresponding Geobacter developed under the influence of external voltage, pairing with methanogens in the anodic and cathodic biofilm to generate methane. Additionally, at the cathode, the Alkaliphilus (basophilic bacteria) also correspondingly shifted alongside the change of external voltage. The mcrA sequencing confirmed a change in the dominant microbe from acetoclastic (mostly Methanosarcina mazei LYC) to hydrogenotrophic methanogens (mostly basophilic Methanobacterium alcaliphilum) at the cathode with 0.8 V voltage. Overall, the external voltage not only enriched the functional microbes including electrogens and methanogens but also indirectly shifted the composition of the bacterial and archaeal community via disturbing the pH condition. The predictive functional profiling indicated that the cathodic methanogenesis principally followed the metabolism pathway of the hydrogenotrophic methanogens, suggesting the F420 co-enzyme could be the key mediate for electron transfer. All data suggested that the electric stimulation would change and maintain the micro-environmental conditions to shift the bacterial/archaeal community. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 186
页数:9
相关论文
共 46 条
[31]   Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation [J].
Meuer, J ;
Kuettner, HC ;
Zhang, JK ;
Hedderich, R ;
Metcalf, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5632-5637
[32]   Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms [J].
Nevin, Kelly P. ;
Hensley, Sarah A. ;
Franks, Ashley E. ;
Summers, Zarath M. ;
Ou, Jianhong ;
Woodard, Trevor L. ;
Snoeyenbos-West, Oona L. ;
Lovley, Derek R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (09) :2882-2886
[33]   Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell [J].
Park, Jungyu ;
Lee, Beom ;
Tian, Donjie ;
Jun, Hangbae .
BIORESOURCE TECHNOLOGY, 2018, 247 :226-233
[34]   Absolute quantification of microbial taxon abundances [J].
Props, Ruben ;
Kerckhof, Frederiek-Maarten ;
Rubbens, Peter ;
De Vrieze, Jo ;
Sanabria, Emma Hernandez ;
Waegeman, Willem ;
Monsieurs, Pieter ;
Hammes, Frederik ;
Boon, Nico .
ISME JOURNAL, 2017, 11 (02) :584-587
[35]   Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications [J].
Schievano, Andrea ;
Sciarria, Tommy Pepe ;
Vanbroekhoven, Karolien ;
De Wever, Heleen ;
Puig, Sebastia ;
Andersen, Stephen J. ;
Rabaey, Korneel ;
Pant, Deepak .
TRENDS IN BIOTECHNOLOGY, 2016, 34 (11) :866-878
[36]   Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells [J].
Siegert, Michael ;
Yates, Matthew D. ;
Spormann, Alfred M. ;
Logan, Bruce E. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (07) :1668-1676
[37]   Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology [J].
Smith, Cindy J. ;
Osborn, A. Mark .
FEMS MICROBIOLOGY ECOLOGY, 2009, 67 (01) :6-20
[38]   Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria [J].
Summers, Zarath M. ;
Fogarty, Heather E. ;
Leang, Ching ;
Franks, Ashley E. ;
Malvankar, Nikhil S. ;
Lovley, Derek R. .
SCIENCE, 2010, 330 (6009) :1413-1415
[39]   Alkaliphilus transvaalensis gen. nov., sp nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine [J].
Takai, K ;
Moser, DP ;
Onstott, TC ;
Spoelstra, N ;
Pfiffner, SM ;
Dohnalkova, A ;
Fredrickson, JK .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :1245-1256
[40]   Methanogenic archaea: ecologically relevant differences in energy conservation [J].
Thauer, Rudolf K. ;
Kaster, Anne-Kristin ;
Seedorf, Henning ;
Buckel, Wolfgang ;
Hedderich, Reiner .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (08) :579-591