Sterol Regulatory Element-Binding Protein-1 Determines Plasma Remnant Lipoproteins and Accelerates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

被引:42
|
作者
Karasawa, Tadayoshi [1 ]
Takahashi, Akimitsu [1 ]
Saito, Ryo [1 ]
Sekiya, Motohiro [3 ]
Igarashi, Masaki [3 ]
Iwasaki, Hitoshi [1 ]
Miyahara, Shoko [1 ]
Koyasu, Saori [1 ]
Nakagawa, Yoshimi [1 ]
Ishii, Kiyoaki [1 ]
Matsuzaka, Takashi [1 ]
Kobayashi, Kazuto [1 ]
Yahagi, Naoya [1 ]
Takekoshi, Kazuhiro [2 ]
Sone, Hirohito [1 ]
Yatoh, Shigeru [1 ]
Suzuki, Hiroaki [1 ]
Yamada, Nobuhiro [1 ]
Shimano, Hitoshi [1 ]
机构
[1] Univ Tsukuba, Grad Sch Comprehens Human Sci, Dept Internal Med Endocrinol & Metab, Tsukuba, Ibaraki 3058575, Japan
[2] Univ Tsukuba, Grad Sch Comprehens Human Sci, Dept Clin Pathol, Tsukuba, Ibaraki 3058575, Japan
[3] Univ Tokyo, Dept Internal Med, Tokyo, Japan
关键词
atherosclerosis; hyperlipoproteinemia; lipids; lipoproteins; triglycerides; PHOSPHOLIPID-TRANSFER PROTEIN; TRANSGENIC MICE; CHOLESTEROL-SYNTHESIS; APOLIPOPROTEIN-B; CULTURED-CELLS; X-RECEPTOR; LIVER; GENE; SREBP-1; VLDL;
D O I
10.1161/ATVBAHA.110.219659
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective-Sterol regulatory element-binding protein-1 (SREBP-1) is nutritionally regulated and is known to be a key transcription factor regulating lipogenic enzymes. The goal of this study was to evaluate the roles of SREBP-1 in dyslipidemia and atherosclerosis. Methods and Results-Transgenic mice that overexpress SREBP-1c in the liver and SREBP-1-deficient mice were crossed with low-density lipoprotein receptor (LDLR)-deficient mice, and the plasma lipids and atherosclerosis were analyzed. Hepatic SREBP-1c overexpression in LDLR-deficient mice caused postprandial hypertriglyceridemia, increased very-low-density lipoprotein (VLDL) cholesterol, and decreased high-density lipoprotein cholesterol in plasma, which resulted in accelerated aortic atheroma formation. Conversely, absence of SREBP-1 suppressed Western diet-induced hyperlipidemia in LDLR-deficient mice and ameliorated atherosclerosis. In contrast, bone marrow-specific SREBP-1 deficiency did not alter the development of atherosclerosis. The size of nascent VLDL particles secreted from the liver was increased in SREBP-1c transgenic mice and reduced in SREBP-1-deficient mice, accompanied by upregulation and downregulation of phospholipid transfer protein expression, respectively. Conclusion-Hepatic SREBP-1c determines plasma triglycerides and remnant cholesterol and contributes to atherosclerosis in hyperlipidemic states. Hepatic SREBP-1c also regulates the size of nascent VLDL particles. (Arterioscler Thromb Vasc Biol. 2011;31:1788-1795.)
引用
收藏
页码:1788 / U201
页数:34
相关论文
共 50 条
  • [21] Dietary Palmitoleic Acid Attenuates Atherosclerosis Progression and Hyperlipidemia in Low-Density Lipoprotein Receptor-Deficient Mice
    Yang, Zhi-Hong
    Pryor, Milton
    Noguchi, Audrey
    Sampson, Maureen
    Johnson, Brittany
    Pryor, Matthew
    Donkor, Kwame
    Amar, Marcelo
    Remaley, Alan T.
    MOLECULAR NUTRITION & FOOD RESEARCH, 2019, 63 (12)
  • [22] Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription
    Llorente-Cortes, V.
    Costales, P.
    Bernues, J.
    Camino-Lopez, S.
    Badimon, L.
    JOURNAL OF MOLECULAR BIOLOGY, 2006, 359 (04) : 950 - 960
  • [23] The lysophosphatidylcholine effector, G2A, promotes atherosclerosis in low-density lipoprotein receptor-deficient mice
    Parks, BW
    Lusis, AJ
    Kabarowski, JH
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2006, 26 (05) : E91 - E91
  • [24] Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice
    Pan, JH
    Sukhova, GK
    Yang, JT
    Wang, B
    Xie, T
    Fu, HX
    Zhang, X
    Satoskar, AR
    David, JR
    Metz, CN
    Bucala, R
    Fang, K
    Simon, DI
    Chapman, HA
    Libby, P
    Shi, GP
    CIRCULATION, 2004, 109 (25) : 3149 - 3153
  • [25] Targeted disruption of cathepsin S reduces atherosclerosis in low-density lipoprotein receptor-deficient mice.
    Sukhova, GK
    Zhang, Y
    Pan, JH
    Libby, P
    Shi, GP
    CIRCULATION, 2001, 104 (17) : 328 - 329
  • [26] Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice
    Foks, Amanda C.
    Engelbertsen, Daniel
    Kuperwaser, Felicia
    Alberts-Grill, Noah
    Gonen, Ayelet
    Witztum, Joseph L.
    Lederer, James
    Jarolim, Petr
    DeKruyff, Rosemarie H.
    Freeman, Gordon J.
    Lichtman, Andrew H.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36 (03) : 456 - 465
  • [27] Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level
    Hasty, AH
    Shimano, H
    Yahagi, N
    Amemiya-Kudo, M
    Perrey, S
    Yoshikawa, T
    Osuga, J
    Okazaki, H
    Tamura, Y
    Iizuka, Y
    Shionoiri, F
    Ohashi, K
    Harada, K
    Gotoda, T
    Nagai, R
    Ishibashi, S
    Yamada, N
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (40) : 31069 - 31077
  • [28] Macrophage-Specific Expression of Mannose-Binding Lectin Controls Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice
    Matthijsen, Robert A.
    de Winther, Menno P. J.
    Kuipers, Dian
    van der Made, Ingeborg
    Weber, Christian
    Herias, M. Veronica
    Gijbels, Marion J. J.
    Buurman, Wim A.
    CIRCULATION, 2009, 119 (16) : 2188 - U101
  • [29] Cysteamine Decreases Low-Density Lipoprotein Oxidation, Causes Regression of Atherosclerosis, and Improves Liver and Muscle Function in Low-Density Lipoprotein Receptor-Deficient Mice
    Ahmad, Feroz
    Mitchell, Robert D.
    Houben, Tom
    Palo, Angela
    Yadati, Tulasi
    Parnell, Andrew J.
    Patel, Ketan
    Shiri-Sverdlov, Ronit
    Leake, David S.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (18):
  • [30] Obesity causes very low density lipoprotein clearance defects in low-density lipoprotein receptor-deficient mice
    Coenen, Kimberly R.
    Gruen, Mamie L.
    Hasty, Alyssa H.
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2007, 18 (11): : 727 - 735