Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition

被引:108
作者
Garcia-Andrade, Javier [1 ]
Ramirez, Vicente [1 ]
Flors, Victor [1 ]
Vera, Pablo [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas, Valencia 46022, Spain
关键词
COI1; priming; aba2; beta-amino-butyric acid; PMR4; Plectosphaerella cucumerina; JASMONATE-REGULATED DEFENSE; ABSCISIC-ACID; DISEASE RESISTANCE; SALICYLIC-ACID; PSEUDOMONAS-SYRINGAE; TRANSCRIPTION FACTOR; PLANT-PATHOGEN; CELL-WALL; ALTERNARIA-BRASSICICOLA; NECROTROPHIC PATHOGENS;
D O I
10.1111/j.1365-313X.2011.04633.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the present study, we evaluated the role of the defense-related gene OCP3 in callose deposition as a response to two necrotrophic fungal pathogens, Botrytis cinerea and Plectosphaerella cucumerina. ocp3 plants exhibited accelerated and intensified callose deposition in response to fungal infection associated with enhanced disease resistance to the two pathogens. A series of double mutant analyses showed potentiation of callose deposition and the heightened disease resistance phenotype in ocp3 plants required the plant hormone abscisic acid (ABA) and the PMR4 gene encoding a callose synthase. This finding was congruent with an observation that ocp3 plants exhibited increased ABA accumulation, and ABA was rapidly synthesized following fungal infection in wild-type plants. Furthermore, we determined that potentiation of callose deposition in ocp3 plants, including enhanced disease resistance, also required jasmonic acid (JA) recognition though a COI1 receptor, however JA was not required for basal callose deposition following fungal infection. In addition, potentiation of callose deposition in ocp3 plants appeared to follow a different mechanism than that proposed for callose beta-amino-butyric acid (BABA)-induced resistance and priming, because ocp3 plants responded to BABA-induced priming for callose deposition and induced resistance of a magnitude similar to that observed in wild-type plants. Our results point to a model in which OCP3 represents a specific control point for callose deposition regulated by JA yet ultimately requiring ABA. These results provide new insights into the mechanism of callose deposition regulation in response to pathogen attack; however the complexities of the processes remain poorly understood.
引用
收藏
页码:783 / 794
页数:12
相关论文
共 53 条
[11]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF PLANT GENOMIC DNA FOR PCR ANALYSIS [J].
EDWARDS, K ;
JOHNSTONE, C ;
THOMPSON, C .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1349-1349
[12]   The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses [J].
Ellis, C ;
Karafyllidis, I ;
Wasternack, C ;
Turner, JG .
PLANT CELL, 2002, 14 (07) :1557-1566
[13]   Abscisic Acid Has a Key Role in Modulating Diverse Plant-Pathogen Interactions [J].
Fan, Jun ;
Hill, Lionel ;
Crooks, Casey ;
Doerner, Peter ;
Lamb, Chris .
PLANT PHYSIOLOGY, 2009, 150 (04) :1750-1761
[14]   The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses [J].
Fernandez-Calvo, Patricia ;
Chini, Andrea ;
Fernandez-Barbero, Gemma ;
Chico, Jose-Manuel ;
Gimenez-Ibanez, Selena ;
Geerinck, Jan ;
Eeckhout, Dominique ;
Schweizer, Fabian ;
Godoy, Marta ;
Manuel Franco-Zorrilla, Jose ;
Pauwels, Laurens ;
Witters, Erwin ;
Isabel Puga, Maria ;
Paz-Ares, Javier ;
Goossens, Alain ;
Reymond, Philippe ;
De Jaeger, Geert ;
Solano, Roberto .
PLANT CELL, 2011, 23 (02) :701-715
[15]   Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4 [J].
Ferrari, S ;
Plotnikova, JM ;
De Lorenzo, G ;
Ausubel, FM .
PLANT JOURNAL, 2003, 35 (02) :193-205
[16]   Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3 [J].
Ferrari, Simone ;
Galletti, Roberta ;
Denoux, Carine ;
De Lorenzo, Giulia ;
Ausubel, Frederick M. ;
Dewdney, Julia .
PLANT PHYSIOLOGY, 2007, 144 (01) :367-379
[17]   Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola [J].
Flors, Victor ;
Ton, Jurriaan ;
van Doorn, Ronald ;
Jakab, Gabor ;
Garcia-Agustin, Pilar ;
Mauch-Mani, Brigitte .
PLANT JOURNAL, 2008, 54 (01) :81-92
[18]   Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana [J].
Ghassemian, Majid ;
Lutes, Jason ;
Chang, Hur-Song ;
Lange, Iris ;
Chen, Wenqiong ;
Zhu, Tong ;
Wang, Xun ;
Lange, B. Markus .
PHYTOCHEMISTRY, 2008, 69 (17) :2899-2911
[19]  
Glazebrook J, 1996, GENETICS, V143, P973
[20]   A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana [J].
Gómez-Gómez, L ;
Felix, G ;
Boller, T .
PLANT JOURNAL, 1999, 18 (03) :277-284