Blind source separation and Wigner-Ville transform as tools for the extraction of the gravitational wave signal

被引:5
作者
Forte, L. A. [1 ,2 ]
Garufi, F. [1 ,2 ]
Milano, L. [1 ,2 ]
Croce, R. P. [3 ]
Pierro, V. [3 ]
Pinto, I. [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy
[3] Univ Sannio, Benevento, Italy
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 12期
关键词
D O I
10.1103/PhysRevD.83.122006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coalescing binaries are credited as being relatively abundant sources of gravitational radiation, with a rich content of physical information. Their signals, apart from (important) complications due to higher-order post-Newtonian corrections, spin-orbit and spin-spin couplings, etc., are so-called chirp signals, i.e. a signal modulated both in amplitude and in frequency. The rate at which the frequency changes depends basically on the chirp mass, a particular combination of the masses of the two objets. It is known that the Wigner-Ville transform is an optimal time-frequency distribution in detecting chirping signals whose instantaneous frequency grows linearly in time. We compare the performance of the plain Wigner-Ville transform and of blind source separation-augmented Wigner-Ville transform. We consider a typical chirp of interest for ground-based gravitational wave (GW) detectors and inject it at a SNR = 12 into two independent time series of white Gaussian noise. We show that the blind source separation preprocessing acts as a powerful denoising tool, yielding a significant enhancement in the detection capability of the Wigner-Ville transform alone. We report preliminary results, focused on detection performances, which appear to be very promising; the improvement in parameters estimation will be discussed in a forthcoming paper. The possibility to apply our analysis to a network of GW interferometers is briefly discussed. Finally, we stress the fact the our methods are completely independent on the shape of the signal, and thus have broader applications besides chirp gravitational wave signals.
引用
收藏
页数:12
相关论文
共 17 条
[1]   Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors [J].
Abadie, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abernathy, M. ;
Accadia, T. ;
Acerneseac, F. ;
Adams, C. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Ceron, E. Amador ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Antonuccia, F. ;
Aoudiaa, S. ;
Arain, M. A. ;
Araya, M. ;
Aronsson, M. ;
Arun, K. G. ;
Aso, Y. ;
Aston, S. ;
Astonea, P. ;
Atkinson, D. E. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballardin, G. ;
Ballmer, S. ;
Barker, D. ;
Barnum, S. ;
Baroneac, F. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barsuglia, M. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Bauchrowitz, J. ;
Bauera, Th S. ;
Behnke, B. ;
Beker, M. G. ;
Benacquista, M. ;
Bertolini, A. ;
Betzwieser, J. ;
Beveridge, N. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (17)
[2]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[3]   Status of Virgo [J].
Acernese, F. ;
Alshourbagy, M. ;
Amico, P. ;
Antonucci, F. ;
Aoudia, S. ;
Astone, P. ;
Avino, S. ;
Baggio, L. ;
Ballardin, G. ;
Barone, F. ;
Barsotti, L. ;
Barsuglia, M. ;
Bauer, Th S. ;
Bigotta, S. ;
Birindelli, S. ;
Bizouard, M. A. ;
Boccara, C. ;
Bondu, F. ;
Bosi, L. ;
Braccini, S. ;
Bradaschia, C. ;
Brillet, A. ;
Brisson, V. ;
Buskulic, D. ;
Cagnoli, G. ;
Calloni, E. ;
Campagna, E. ;
Carbognani, F. ;
Cavalier, F. ;
Cavalieri, R. ;
Cella, G. ;
Cesarini, E. ;
Chassande-Mottin, E. ;
Clapson, A-C ;
Cleva, F. ;
Coccia, E. ;
Corda, C. ;
Corsi, A. ;
Cottone, F. ;
Coulon, J-P ;
Cuoco, E. ;
D'Antonio, S. ;
Dari, A. ;
Dattilo, V. ;
Davier, M. ;
De Rosa, R. ;
Del Prete, M. ;
Di Fiore, L. ;
Di Lieto, A. ;
Emilio, M. Di Paolo .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (11)
[4]  
[Anonymous], 1998, FUNDEMENTALS STAT SI
[5]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[6]   On the time-frequency detection of chirps [J].
Chassande-Mottin, E ;
Flandrin, P .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :252-281
[7]  
Cichocki A., 1998, ADAPTIVE BLIND SIGNA
[8]  
CROCE RP, 2002, THESIS U SANNIO
[9]  
Flandrin Patrick, 1998, Time-frequency/time-scale analysis
[10]  
Hyvarinen J. K. A., 1998, INDEPENDENT COMPONEN