Mechanical properties of low-transformation-temperature weld metals after low-temperature postweld heat treatment

被引:20
作者
Wu, Shipin [1 ,2 ]
Wang, Dongpo [1 ,2 ,3 ]
Zhang, Zhi [4 ]
Li, Chengning [1 ,2 ]
Liu, Xiuguo [1 ,2 ]
Meng, Xianqun [5 ]
Feng, Zhongyuan [1 ,2 ]
Di, Xinjie [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Key Lab Adv Joining Technol, Tianjin 300350, Peoples R China
[3] State Key Lab Met Mat Marine Equipment & Applicat, Anshan, Peoples R China
[4] Tianjin Univ, Sch Mech Engn, Tianjin, Peoples R China
[5] Tianjin Met Grp Flourish Steel Ind Co Ltd, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-transformation-temperature welding material; stability of retained austenite; postweld heat treatment; martensitic transformation; toughness; transformation-induced plasticity effect; RETAINED AUSTENITE; DEFORMATION-BEHAVIOR; FATIGUE-STRENGTH; STEEL; MICROSTRUCTURE; MARTENSITE; STABILITY; DUCTILITY; CONSUMABLES; EVOLUTION;
D O I
10.1080/13621718.2018.1492776
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The as-welded low-transformation-temperature (LTT) weld metal with martensite/retained austenite (RA) dual phase exhibits high toughness and ductility, but the yield strength (YS) is very low. After low-temperature postweld heat treatment at 300 degrees C, the YS, toughness and ductility of dual-phase LTT weld metal increase dramatically, while there is a slight effect on mechanical properties of full martensite LTT weld metal. During the low-temperature postweld heat treatment, carbon atoms diffuse from martensite into RA, which increases the stability of RA. The improvements of mechanical properties for dual-phase LTT weld metal after low-temperature postweld heat treatment are attributed to the increased stability of RA and enhanced transformation-induced plasticity effect.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 38 条
[1]  
[Anonymous], J JPN I MET
[2]  
DYSON DJ, 1970, J IRON STEEL I, V208, P469
[3]   Comparison of two types of low-transformation-temperature weld metals based on solidification mode [J].
Feng, Zhong-Yuan ;
Di, Xin-Jie ;
Wu, Shi-Pin ;
Zhang, Zhi ;
Liu, Xiao-Qian ;
Wang, Dong-Po .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2018, 23 (03) :241-248
[4]   Improving fatigue strength of welded 1300 MPa yield strength steel using HFMI treatment or LTT fillers [J].
Harati, Ebrahim ;
Svensson, Lars-Erik ;
Karlsson, Leif .
ENGINEERING FAILURE ANALYSIS, 2017, 79 :64-74
[5]   Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels [J].
Harati, Ebrahim ;
Karlsson, Leif ;
Svensson, Lars-Erik ;
Dalaei, Kamellia .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 97 :39-47
[6]   Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels [J].
Huang, Qiuliang ;
De Cooman, Bruno C. ;
Biermann, Horst ;
Mola, Javad .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (05) :1947-1959
[7]   The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel [J].
Isfahany, A. Nasery ;
Saghafian, H. ;
Borhani, G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (09) :3931-3936
[8]   Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels [J].
Jimenez-Melero, E. ;
van Dijk, N. H. ;
Zhao, L. ;
Sietsma, J. ;
Offerman, S. E. ;
Wright, J. P. ;
van der Zwaag, S. .
ACTA MATERIALIA, 2007, 55 (20) :6713-6723
[9]   Martensite in steel: strength and structure [J].
Krauss, G .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 273 :40-57
[10]   Properties and weldability of modified low transformation temperature filler wires [J].
Kromm, A. ;
van der Mee, V. ;
Kannengiesser, T. ;
Kalfsbeek, B. .
WELDING IN THE WORLD, 2015, 59 (03) :413-425