LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data

被引:13
作者
Geeven, Geert [2 ]
MacGillavry, Harold D. [1 ]
Eggers, Ruben [3 ]
Sassen, Marion M. [1 ]
Verhaagen, Joost [2 ,3 ]
Smit, August B. [1 ]
de Gunst, Mathisca C. M. [2 ]
van Kesteren, Ronald E. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Mol & Cellular Neurobiol, Ctr Neurogenom & Cognit Res, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Fac Sci, Dept Math, NL-1081 HV Amsterdam, Netherlands
[3] Netherlands Inst Neurosci, Dept Neuroregenerat, NL-1105 BA Amsterdam, Netherlands
关键词
TRANSCRIPTION FACTOR-BINDING; PERIPHERAL-NERVE INJURY; DORSAL-ROOT GANGLION; EMBRYONIC STEM-CELLS; SPINAL-CORD-INJURY; SACCHAROMYCES-CEREVISIAE; NEURITE OUTGROWTH; FATTY-ACIDS; NEUROBLASTOMA-CELLS; NETWORK MOTIFS;
D O I
10.1093/nar/gkr139
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All cellular processes are regulated by condition-specific and time-dependent interactions between transcription factors and their target genes. While in simple organisms, e.g. bacteria and yeast, a large amount of experimental data is available to support functional transcription regulatory interactions, in mammalian systems reconstruction of gene regulatory networks still heavily depends on the accurate prediction of transcription factor binding sites. Here, we present a new method, log-linear modeling of 3D contingency tables (LLM3D), to predict functional transcription factor binding sites. LLM3D combines gene expression data, gene ontology annotation and computationally predicted transcription factor binding sites in a single statistical analysis, and offers a methodological improvement over existing enrichment-based methods. We show that LLM3D successfully identifies novel transcriptional regulators of the yeast metabolic cycle, and correctly predicts key regulators of mouse embryonic stem cell self-renewal more accurately than existing enrichment-based methods. Moreover, in a clinically relevant in vivo injury model of mammalian neurons, LLM3D identified peroxisome proliferator-activated receptor gamma (PPAR gamma) as a neuron-intrinsic transcriptional regulator of regenerative axon growth. In conclusion, LLM3D provides a significant improvement over existing methods in predicting functional transcription regulatory interactions in the absence of experimental transcription factor binding data.
引用
收藏
页码:5313 / 5327
页数:15
相关论文
共 62 条
[1]   Toucan:: deciphering the cis-regulatory logic of coregulated genes [J].
Aerts, S ;
Thijs, G ;
Coessens, B ;
Staes, M ;
Moreau, Y ;
Moor, BD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (06) :1753-1764
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[4]  
Angelini C., 2007, 33107 CNRIAC
[5]  
Angelini C, 2007, STAT APPL GENET MOL, V6
[6]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[7]   Integrated assessment and prediction of transcription factor binding [J].
Beyer, Andreas ;
Workman, Christopher ;
Hollunder, Jens ;
Radke, Doerte ;
Moeller, Ulrich ;
Wilhelm, Thomas ;
Ideker, Trey .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (06) :615-626
[8]   EXPRESSION OF SENSORY NEURON ANTIGENS BY A DORSAL-ROOT GANGLION-CELL LINE, F-11 [J].
BOLAND, LM ;
DINGLEDINE, R .
DEVELOPMENTAL BRAIN RESEARCH, 1990, 51 (02) :259-266
[9]   The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses [J].
Bracken, CP ;
Whitelaw, ML ;
Peet, DJ .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (07) :1376-1393
[10]   GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists [J].
Carmona-Saez, Pedro ;
Chagoyen, Monica ;
Tirado, Francisco ;
Carazo, Jose M. ;
Pascual-Montano, Alberto .
GENOME BIOLOGY, 2007, 8 (01)