Antipodal Robotic Grasping using Generative Residual Convolutional Neural Network

被引:237
作者
Kumra, Sulabh [1 ,2 ]
Joshi, Shirin [1 ]
Sahin, Ferat [1 ]
机构
[1] Rochester Inst Technol, Multiagent Biorobot Lab MABL, Rochester, NY 14623 USA
[2] OSARO Inc, San Francisco, CA USA
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
关键词
D O I
10.1109/IROS45743.2020.9340777
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a modular robotic system to tackle the problem of generating and performing antipodal robotic grasps for unknown objects from the n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (similar to 20ms). We evaluate the proposed model architecture on standard datasets and a diverse set of household objects. We achieved state-of-the-art accuracy of 97.7% and 94.6% on Cornell and Jacquard grasping datasets, respectively. We also demonstrate a grasp success rate of 95.4% and 93% on household and adversarial objects, respectively, using a 7 DoF robotic arm.
引用
收藏
页码:9626 / 9633
页数:8
相关论文
共 37 条
[1]   Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach [J].
Antanas, Laura ;
Moreno, Plinio ;
Neumann, Marion ;
de Figueiredo, Rui Pimentel ;
Kersting, Kristian ;
Santos-Victor, Jose ;
De Raedt, Luc .
AUTONOMOUS ROBOTS, 2019, 43 (06) :1393-1418
[2]  
Asif U., 2018, BRIT MACH VIS C, P10
[3]   RGB-D Object Recognition and Grasp Detection Using Hierarchical Cascaded Forests [J].
Asif, Umar ;
Bennamoun, Mohammed ;
Sohel, Ferdous A. .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (03) :547-564
[4]  
Asir U, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4875
[5]  
Bicchi A., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P348, DOI 10.1109/ROBOT.2000.844081
[6]   Data-Driven Grasp Synthesis-A Survey [J].
Bohg, Jeannette ;
Morales, Antonio ;
Asfour, Tamim ;
Kragic, Danica .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (02) :289-309
[7]   Real-World Multiobject, Multigrasp Detection [J].
Chu, Fu-Jen ;
Xu, Ruinian ;
Vela, Patricio A. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :3355-3362
[8]  
Depierre A, 2018, IEEE INT C INT ROBOT, P3511, DOI 10.1109/IROS.2018.8593950
[9]  
Diederik J. B., 2015, INT C LEARN REPR
[10]  
Fang Y, 2017, IEEE PHOT SPEC CONF, P1603, DOI 10.1109/PVSC.2017.8366140