Antipodal Robotic Grasping using Generative Residual Convolutional Neural Network

被引:192
作者
Kumra, Sulabh [1 ,2 ]
Joshi, Shirin [1 ]
Sahin, Ferat [1 ]
机构
[1] Rochester Inst Technol, Multiagent Biorobot Lab MABL, Rochester, NY 14623 USA
[2] OSARO Inc, San Francisco, CA USA
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
关键词
D O I
10.1109/IROS45743.2020.9340777
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a modular robotic system to tackle the problem of generating and performing antipodal robotic grasps for unknown objects from the n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (similar to 20ms). We evaluate the proposed model architecture on standard datasets and a diverse set of household objects. We achieved state-of-the-art accuracy of 97.7% and 94.6% on Cornell and Jacquard grasping datasets, respectively. We also demonstrate a grasp success rate of 95.4% and 93% on household and adversarial objects, respectively, using a 7 DoF robotic arm.
引用
收藏
页码:9626 / 9633
页数:8
相关论文
共 37 条
  • [1] Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach
    Antanas, Laura
    Moreno, Plinio
    Neumann, Marion
    de Figueiredo, Rui Pimentel
    Kersting, Kristian
    Santos-Victor, Jose
    De Raedt, Luc
    [J]. AUTONOMOUS ROBOTS, 2019, 43 (06) : 1393 - 1418
  • [2] Asif U., 2018, BRIT MACH VIS C BMVC, P10
  • [3] RGB-D Object Recognition and Grasp Detection Using Hierarchical Cascaded Forests
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous A.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (03) : 547 - 564
  • [4] Asir U, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4875
  • [5] Bicchi A., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P348, DOI 10.1109/ROBOT.2000.844081
  • [6] Data-Driven Grasp Synthesis-A Survey
    Bohg, Jeannette
    Morales, Antonio
    Asfour, Tamim
    Kragic, Danica
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (02) : 289 - 309
  • [7] Real-World Multiobject, Multigrasp Detection
    Chu, Fu-Jen
    Xu, Ruinian
    Vela, Patricio A.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 3355 - 3362
  • [8] Depierre A, 2018, IEEE INT C INT ROBOT, P3511, DOI 10.1109/IROS.2018.8593950
  • [9] Diederik J. B., 2015, INT C LEARN REPR
  • [10] Fang Y, 2017, IEEE PHOT SPEC CONF, P1603, DOI 10.1109/PVSC.2017.8366140