An analysis of nonlocal difference equations with finite convolution coefficients

被引:7
作者
Goodrich, Christopher S. [1 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Convolution; nonlocal difference equation; coercivity; positive solution; discrete fractional calculus; HAMMERSTEIN INTEGRAL-EQUATIONS; RADIALLY SYMMETRIC-SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; KIRCHHOFF-TYPE; ELLIPTIC EQUATION; EXISTENCE; SYSTEMS; SUB; MONOTONICITY;
D O I
10.1007/s11784-021-00914-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence of at least one positive solution to the second-order nonlocal difference equation -A((a(*)(g o u)(b)) (Delta(2)u)(n) = lambda f(n, u(n + 1)), where (a (*) u)(b) represents a finite convolution and g o u denotes the composition of the functions g and u, is considered subject to Dirichlet boundary conditions. Since we use a specially tailored order cone, we are able to introduce minimal conditions on the coefficient function A.
引用
收藏
页数:19
相关论文
共 74 条
[1]  
Afrouzi GA, 2016, FUNKC EKVACIOJ-SER I, V59, P303
[2]   Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative [J].
Alizadeh, Shahram ;
Baleanu, Dumitru ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[3]   A sub-supersolution approach for a quasilinear Kirchhoff equation [J].
Alves, Claudianor O. ;
Correa, Francisco Julio S. A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
[4]   Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method [J].
Alves, Claudianor O. ;
Covei, Dragos-Patru .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 :1-8
[5]   Positive Solutions of Elliptic Kirchhoff Equations [J].
Ambrosetti, Antonio ;
Arcoya, David .
ADVANCED NONLINEAR STUDIES, 2017, 17 (01) :3-15
[6]   Existence of a positive solution for a right focal discrete boundary value problem [J].
Anderson, D. R. ;
Avery, R. I. ;
Henderson, J. ;
Liu, X. ;
Lyons, J. W. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (11) :1635-1642
[7]  
[Anonymous], 2003, SPRINGER MG MATH
[8]  
[Anonymous], 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[9]  
Atici F. M., 2009, ELECTRON J QUAL THEO, V1, P12
[10]  
Atici F.M., 2020, Comput. Math. Biophys., V8, P114