Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning

被引:64
作者
Halicek, Martin [1 ,2 ,3 ]
Dormer, James D. [1 ]
Little, James, V [4 ]
Chen, Amy Y. [5 ]
Fei, Baowei [1 ,6 ]
机构
[1] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[4] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA 30322 USA
[6] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX 75080 USA
基金
美国国家卫生研究院;
关键词
FROZEN-SECTION; MANAGEMENT; BIOPSY;
D O I
10.1364/BOE.381257
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The performance of hyperspectral imaging (HSI) for tumor detection is investigated in ex-vivo specimens from the thyroid (N= 200) and salivary glands (N= 16) from 82 patients. Tissues were imaged with HSI in broadband reflectance and autofluorescence modes. For comparison, the tissues were imaged with two fluorescent dyes. Additionally, HSI was used to synthesize three-band RGB multiplex images to represent the human-eye response and Gaussian RGBs, which are referred to as HSI-synthesized RGB images. Using histological ground truths, deep learning algorithms were developed for tumor detection. For the classification of thyroid tumors, HSI-synthesized RGB images achieved the best performance with an AUC score of 0.90. In salivary glands, HSI had the best performance with 0.92 AUC score. This study demonstrates that HSI could aid surgeons and pathologists in detecting tumors of the thyroid and salivary glands. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1383 / 1400
页数:18
相关论文
共 43 条
[31]   Hyperspectral imaging fluorescence excitation scanning for colon cancer detection [J].
Leavesley, Silas J. ;
Walters, Mikayla ;
Lopez, Carmen ;
Baker, Thomas ;
Favreau, Peter F. ;
Rich, Thomas C. ;
Rider, Paul F. ;
Boudreaux, Carole W. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (10)
[32]   Papillary Thyroid Carcinoma Variants [J].
Lloyd R.V. ;
Buehler D. ;
Khanafshar E. .
Head and Neck Pathology, 2011, 5 (1) :51-56
[33]   Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging [J].
Lu, Guolan ;
Little, James V. ;
Wang, Xu ;
Zhang, Hongzheng ;
Patel, Mihir R. ;
Griffith, Christopher C. ;
El-Deiry, Mark W. ;
Chen, Amy Y. ;
Fei, Baowei .
CLINICAL CANCER RESEARCH, 2017, 23 (18) :5426-5436
[34]   Medical hyperspectral imaging: a review [J].
Lu, Guolan ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
[35]   Is Frozen-Section Analysis During Thyroid Operation Useful in the Era of Molecular Testing? [J].
Mallick, Reema ;
Stevens, Todd M. ;
Winokur, Thomas S. ;
Asban, Ammar ;
Wang, Thomas N. ;
Lindeman, Brenessa M. ;
Porterfield, John R. ;
Chen, Herbert .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2019, 228 (04) :474-479
[36]   Current Understanding and Management of Medullary Thyroid Cancer [J].
Roy, Madhuchhanda ;
Chen, Herbert ;
Sippel, Rebecca S. .
ONCOLOGIST, 2013, 18 (10) :1093-1100
[37]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626
[38]   Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies [J].
Shapey, Jonathan ;
Xie, Yijing ;
Nabavi, Eli ;
Bradford, Robert ;
Saeed, Shakeel R. ;
Ourselin, Sebastien ;
Vercauteren, Tom .
JOURNAL OF BIOPHOTONICS, 2019, 12 (09)
[39]   Follicular thyroid carcinoma [J].
Sobrinho-Simoes, Manuel ;
Eloy, Catarina ;
Magalhaes, Joao ;
Lobo, Claudia ;
Amaro, Teresina .
MODERN PATHOLOGY, 2011, 24 :S10-S18
[40]   The role of frozen section biopsy for parotid gland tumour with benign fine-needle aspiration cytology [J].
Suzuki, M. ;
Nakaegawa, Y. ;
Kobayashi, T. ;
Kawase, T. ;
Matsuzuka, T. ;
Murono, S. .
JOURNAL OF LARYNGOLOGY AND OTOLOGY, 2019, 133 (03) :227-229