Fatigue behavior of ultrafine-grained and coarse-grained Cr-Ni austenitic stainless steels

被引:33
作者
Hamada, A. S. [2 ]
Karjalainen, L. P. [1 ]
Surya, P. K. C. Venkata [3 ,4 ]
Misra, R. D. K. [3 ,4 ]
机构
[1] Univ Oulu, Dept Mech Engn, Mat Engn Lab, Oulu 90014, Finland
[2] Suez Canal Univ, Dept Met & Mat Engn, Fac Petr & Min Engn, Suez, Egypt
[3] Univ Louisiana Lafayette, Ctr Struct & Funct Mat, Lafayette, LA 70504 USA
[4] Univ Louisiana Lafayette, Dept Chem Engn, Lafayette, LA 70504 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 10-11期
关键词
Austenitic stainless steel; Fatigue strength; Ultrafine-grained microstructure; Grain boundary cracking; Dislocation structure; DEFORMATION-INDUCED MARTENSITE; PLASTIC-DEFORMATION; REVERSION; MICROSTRUCTURE; METALS; FINE; SIZE; TRANSFORMATION; INITIATION; EVOLUTION;
D O I
10.1016/j.msea.2011.01.106
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-cycle bending fatigue behavior of an ultrafine-grained Cr-Ni Type 301LN austenitic stainless steel, obtained by reversion annealing, was investigated and compared to that of the conventional coarse-grained counterpart. The fatigue limit was significantly increased from 350 MPa to 630 MPa, reaching 59% of the tensile strength, a behavior attributed to grain refinement. Fatigue cycling resulted in hardness increments that were very different between these structures; in the coarse-grained steel 47%, but only 6-10% in the ultrafine-grained steel. The fatigue damage was observed to occur by grain boundary cracking in the ultrafine-grained steel, while mostly by slip band formation and crack propagation along these slip bands and grain boundaries in the coarse-grained counterpart. Dislocation structures observed reflected these pronounced differences in the cyclic behavior. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3890 / 3896
页数:7
相关论文
共 42 条