SHADOWING, EXPANSIVENESS AND SPECIFICATION FOR C1-CONSERVATIVE SYSTEMS

被引:17
作者
Bessa, Mario [1 ]
Lee, Manseob [2 ]
Wen, Xiao [3 ]
机构
[1] Univ Beira Interior, P-6201001 Covilha, Portugal
[2] Mokwon Univ, Dept Math, Taejon 302729, South Korea
[3] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Shadowing; expansiveness; specification; generic; Anosov; volume-preserving; star systems; SYMBOLIC EXTENSIONS; PERIODIC POINTS; DIFFEOMORPHISMS; HYPERBOLICITY; STABILITY; ABUNDANCE; PROPERTY; FLOWS;
D O I
10.1016/S0252-9602(15)30005-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a C-1-generic volume-preserving dynamical system (diffeomorphism or flow) has the shadowing property or is expansive or has the weak specification property if and only if it is Anosov. Finally, as in [10, 27], we prove that the C-1-robustness, within the volume-preserving context, of the expansiveness property and the weak specification property, imply that the dynamical system (diffeomorphism or flow) is Anosov.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 50 条
[1]  
Abdenur F, 2007, DISCRETE CONT DYN-A, V17, P223
[2]   Homoclinic classes with shadowing [J].
Ahn, Jiweon ;
Lee, Keonhee ;
Lee, Manseob .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[3]  
Arbieto A, 2013, MATH Z, V275, P1239, DOI 10.1007/s00209-013-1180-7
[4]   A pasting lemma and some applications for conservative systems [J].
Arbieto, Alexander ;
Matheus, Carlos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1399-1417
[5]   Hyperbolicity in the volume-preserving scenario [J].
Arbieto, Alexander ;
Catalan, Thiago .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 :1644-1666
[6]   The specification property for flows from the robust and generic viewpoint [J].
Arbieto, Alexander ;
Senos, Laura ;
Sodero, Tatiana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) :1893-1909
[7]   Periodic orbits and expansiveness [J].
Arbieto, Alexander .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) :801-807
[8]   On the regularization of conservative maps [J].
Avila, Artur .
ACTA MATHEMATICA, 2010, 205 (01) :5-18
[9]   On C1-robust transitivity of volume-preserving flows [J].
Bessa, Mario ;
Rocha, Jorge .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (11) :3127-3143
[10]   A generic incompressible flow is topological mixing [J].
Bessa, Mario .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) :1169-1174