The mechanical properties of adhesives significantly influence the bond behavior of steel structures strengthened by carbon fiber-reinforced polymer (CFRP) composites. In order to improve the toughness of the adhesive and the ductile behavior of adhesively bonded CRFP-steel joint, functionalized nano-sized silica (hereafter refer as nano-SiO2) toughening agent were added into the adhesive. Firstly, the effects of functionalized nano-SiO2 toughening agent on the mechanical properties of the adhesives after curing at room temperature were tested and analyzed. Then, a total of 19 adhesively bonded CFRP-steel double-lap joints were fabricated and tested under shear loading to investigate the effect of functionalized nano-SiO2 on the bonding behaviors, including the failure modes, bond-slip relationships, bond strength and so on. The test results indicate that tensile stress-strain relationship of the adhesive changes from linear to non-linear with the increase of functionalized nano-SiO2 toughening agent, the elongation at break, strain energy and shear strength of functionalized nano-SiO2-toughened adhesive (ZR14-weight ratio of 1% functionalized nano-SiO2) was improved by 202.88%, 292.10% and 133.12% respectively in comparison to the adhesive without functionalized nano- SiO2 toughening agent. Moreover, the tensile strength, elongation at break, and strain energy of functionalized nano-SiO2-toughened adhesive ZR14 are much higher than those of commercial adhesives (e.g. Sika30, 330) without Nano-SiO2. In addition, the failure mode of CFRP-steel joints changed from interface failure to CFRP plate delamination, when the weight ratio of functionalized nano-SiO2 to adhesive increasing from 0 to 1%. The bond-slip curves could be simplified into a bilinear model (triangle-shape) for CFRP-steel joints without and with only weight ratio of 0.5% functionalized nano-SiO2, however, the bond-slip curves change to simplified trilinear model (trapezoidal shape) for the joints with 1% functionalized nano-SiO2 and the toughness of bonding interface is significantly improved. In all, the CFRP-steel lap joints bonded by adhesive with appropriate amount functionalized nano-SiO2 (i.e., wt. of 1%) shows superior interfacial performance. (C) 2020 Elsevier Ltd. All rights reserved.d