Classification of finite spectral triples

被引:96
作者
Krajewski, T
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Univ Aix Marseille 1, F-13331 Marseille 3, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
关键词
noncommutative geometry; Yang-Mills theory; spontaneous symmetry breaking; chiral fermions; spectral triples;
D O I
10.1016/S0393-0440(97)00068-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the spin structure on Riemannian manifold can be extended to noncommutative geometry using the notion of spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to Yukawa couplings. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
[41]   Gauge transformations for twisted spectral triples [J].
Giovanni Landi ;
Pierre Martinetti .
Letters in Mathematical Physics, 2018, 108 :2589-2626
[42]   Krein Spectral Triples and the Fermionic Action [J].
van den Dungen, Koen .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2016, 19 (01)
[43]   Fractal spectral triples on Kellendonk's C*-algebra of a substitution tiling [J].
Mampusti, Michael ;
Whittaker, Michael F. .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 :224-239
[44]   Spectral triples, Coulhon-Varopoulos dimension and heat kernel estimates [J].
Arhancet, Cedric .
ADVANCES IN MATHEMATICS, 2024, 451
[45]   Dirac operators and spectral triples for some fractal sets built on curves [J].
Christensen, Erik ;
Ivan, Cristina ;
Lapidus, Michel L. .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :42-78
[46]   Nonunital spectral triples associated to degenerate metrics [J].
Rennie, A .
REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (01) :125-146
[47]   Holonomy loops, spectral triples and quantum gravity [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller ;
Nest, Ryszard .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
[48]   A note on twisted crossed products and spectral triples [J].
Antonini, P. ;
Guido, D. ;
Isola, T. ;
Rubin, A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
[49]   Morita “Equivalences” of Equivariant Torus Spectral Triples [J].
Jan Jitse Venselaar .
Letters in Mathematical Physics, 2013, 103 :131-144
[50]   A Canonical Trace Associated with Certain Spectral Triples [J].
Paycha, Sylvie .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6